Category: ALARA

20 Apr 2022
nurse guiding patient entering mri scanner

The Basics of Radiation Shielding in Medicine

Basic radiation protection guidelines can be summed up in three simple concepts: time, distance, and shielding. While both limiting the time spent and increasing the proximity to an ionizing radiation source is something that lies within the power of the individual, shielding and X-ray room design require careful planning and execution by the facility or Radiation Safety Officer.

What is radiation shielding?

Radiation shielding is simply a barrier placed between a source of radiation and the area or person that needs to be protected. The purpose of radiation shielding is to limit, control, or modify the radiation exposure rate at a set point.

Shielding is based on attenuation or the gradual reduction in the intensity of energy through a specific medium. X-ray radiation that passes through certain materials decrease and are absorbed, thereby reducing the exposure to the other side of the barrier.

Without shielding, the public, radiation workers (including dentists and veterinarians), and even nearby office workers could be exposed to levels of radiation outside regulated exposure limits, which can potentially lead to negative health effects. Although it is impossible to completely avoid exposure to radiation, shielding is a critical consideration in any medical facility that greatly reduces unnecessary exposure.

Shielding Materials

There are several different materials that provide protection from penetrating radiation. Concrete, water, special plastic shields, air stops, and lead are all barriers that stop different types of rays and particles, reducing the overall dose a person receives.

In medical environments, the most common shielding materials used include lead, lead-free shielding, and lead composites.

Lead

Lead is one of the most used and most effective shielding materials. It is a highly dense material with a high atomic number and a high number of electrons which make it ideal for shielding in most medical radiation environments. This is because the type and energy of radiation in a medical environment that passes through lead are absorbed or scattered by the electrons present in the material.

Vet team wearing shielding garments during exam

Lead is also cheap and easy to process. It can be mixed with other materials like glass, or binders like vinyl, which allows it to be used as construction materials in X-ray rooms or worn as shielding garments.

Lead-Free Shielding

Technological advances have allowed for the creation of non-toxic, lead-free shielding materials as well. Other attenuating materials such as antimony (Sb), tungsten (W), and tin (Sn) are used in place of lead and combined with additives and binders to create wearable protective garments or materials. They offer equal protection from scatter radiation.

Lead-free shielding has several benefits, including being both recyclable and non-toxic. Lead-free shielding materials can also be lighter which makes them easier for personnel to wear during longer procedures.  

Lead Composite

Lead composite shielding is a long-lasting mixture of lead and lighter materials that attenuate radiation just as successfully as traditional lead shielding barriers.

Because of lead’s weight, it can be cumbersome to use and wear for long periods of time, limiting the efficacy of a radiation worker. Lead composites solve this problem. They are made with blends of tin, vinyl, and rubber and create a shielding barrier that can be up to 25% lighter than traditional shielding without sacrificing their ability to block penetrating radiation.

Shielding and Scatter Radiation

In some diagnostic X-ray procedures, medical personnel such as operators, radiologists, and technologists are required to remain in the room with the patient. This proximity frequently exposes them to something called scatter radiation or radiation that bounces off a patient’s body during a procedure.

To limit this exposure, some medical personnel are required to wear frontal or full wrap-around style lead aprons, thyroid shields, and lead glasses/gloves. These protective garments can attenuate roughly 93% of photons at typically scattered energies.

Lead apron and thyroid collar on hangar

Shielding Products and Design

There are several different ways radiation shielding can be applied or designed to protect healthcare workers.

Room Shielding

Shielding may be required in the floor, ceiling, doors, or any wall of any X-ray or radioactive material use room.  Shielding is used to protect workers, patients, or the public that may be in the adjacent areas/rooms.

During a room’s construction, special shielding materials are installed where their need has been determined. These materials can include lead-lined windows and doors, lead-lined drywall or plywood, lead sheets for floors and ceilings, pipe shielding, and more.

X-ray room shielding requirements vary from state to state. It is important to consult with a qualified expert familiar with these regulations as well as work with an architect experienced in constructing X-ray suites before building a new room.

Leaded Glass and Curtains

In some cases, it isn’t possible for a facility to build shielding into the physical structure of a building.

Leaded glass barriers are a barrier used by techs and doctors which allow them to safely view a patient during an imaging procedure. This type of glass is ideal for radiation-producing equipment in the 80-300 kV range thanks to its high lead content.

Lead curtains are also used to shield radiation workers, particularly in large animal hospitals or operating rooms. These curtains are leaded rubber or vinyl sheets that are ideal for protection against low-level or secondary radiation. They make for room-saving partitions that can be open or closed as needed and typically offer protection from 0.5mm to 2.00mm lead equivalency.

Mobile Shielding Barriers

In some cases, additional barriers are needed to protect doctors and techs during radiology, nuclear medicine, cath lab, or diagnostic imaging procedure. These barriers are lead-lined partitions on wheels, often with a protected window to allow for patient observation.

Mobile radiation barriers come in a variety of shapes, sizes, and lead equivalencies. They are ideal for maintaining flexibility and ease of movement in a procedure room while successfully minimizing the scattered radiation dose to workers in the room.

Versant Physics Shielding Services

Understanding the detailed shielding requirements for your state or facility can be a time-consuming challenge. If executed incorrectly, there can be serious consequences to the health and safety of radiation workers, patients, and building staff as well as potential regulatory compliance fines.

That’s why it is important to have a radiation safety consultant like Versant Physics on your side. Whether you’re constructing a new X-ray room, remodeling or repairing an existing shielding setup, or looking to upgrade your current shielding equipment, our team of expert health and medical physicists can assist.

We provide radiation shielding calculations, evaluation, and design for facilities of all kinds, including hospitals, clinics, dentist offices, chiropractor offices, and veterinary clinics. Our range of expertise includes:

  • Radiography
  • Fluoroscopy
  • Computed Tomography (CT)
  • Nuclear Medicine/PET
  • Mammography
  • Dental/Veterinary X-ray

Not sure what materials or type of shielding is right for your facility? Contact our regulatory experts for a free 30-minute consultation.

21 Apr 2021

Deterministic vs. Stochastic Effects: What Are the Differences?

Ionizing radiation is useful for diagnosing and treating a range of health conditions–broken bones, heart problems, and cancer, for example.  Medical imaging with x-rays, diagnostic radiopharmaceuticals, and radiation therapy are often life-saving procedures.

However, the accidental or misuse of medical radiation can sometimes cause unforeseen and unfortunate consequences.  Radiation protection guidelines and policies help to ensure the safe use of radiation in the medical setting for both patients and staff.

The health effects of ionizing radiation are usually classified into two categories: deterministic and stochastic.

Deterministic Effects


According to the International Atomic Energy Agency (IAEA), a health effect that requires a specific level of exposure to ionizing radiation before it can occur is called a deterministic effect. The severity of a deterministic effect increases as the dose of exposure increases and considers a minimum threshold, below which no detectable clinical effects occur. This type of effect is predictable and reproducible.  For example, localized doses to certain parts of the body at increasing levels will result in the same biological effects.

Deterministic effects are caused by severe cell damage or death. Individuals who experience the physical effects of this cell death do so when it is large enough to cause significant tissue or organ impairment.

Deterministic effects are short-term, adverse tissue reactions resulting from a dose that is significantly high enough to damage living tissues.  The severity of a deterministic effect increases with radiation dose above a threshold, below which the detectable tissue reactions are not observed. 

Deterministic effects are usually predictable and reproducible.  For example, localized doses to certain parts of the body at increasing levels will result in well-understood biological effects.

how to understand and communicate radiation risk diagram
Figure 1 Radiation – Deterministic and Stochastic Effects – Image Wisely, March 2017 “How to Understand and Communicate Radiation Risk”

Some examples of deterministic effects include:

  • Radiation-induced skin burns
  • Acute radiation syndrome
  • Radiation sickness
  • Cataracts
  • Sterility
  • Tumor Necrosis

Stochastic Effects


Stochastic effects are probabilistic effects that occur by chance.  An extremely rare stochastic effect is the development of cancer in an irradiated organ or tissue.  The probability of occurrence is typically proportional to the dose received. Stochastic effects after exposure to radiation occur many years later (the latent period).  The severity is independent of the dose originally received.

Since many agents in the environment are also known carcinogens, and since many cancers occur spontaneously, it is not possible in most cases to directly link radiation exposure to an observed cancer.  If a population group receives a dose of ionizing radiation at one time, it is therefore not possible to predict who in that group will develop cancer, if any, or to tell if the people who do develop cancer did so as a result of the dose of ionizing radiation or some other lifestyle factor, such as smoking.   

Examples of stochastic effects include:

  • Cancer
  • Heritable or genetic changes


Dose Limits and Radiation Protection


In our day-to-day lives, we are exposed to both background and man-made sources of radiation.  Everyone receives radiation exposure from natural cosmic and solar rays, and radionuclides in soil.  The benefits of diagnostic and therapeutic medical radiation far exceed the risks.  Fortunately, the health risks associated with natural background levels are small, and by regulations, we are protected from man-made radiation. 

The National Council on Radiation Protection and Measurements (NCRP) recommends dose limits for managing exposures to ionizing radiation and protecting humans from adverse effects.  Their purpose is to prevent acute and chronic radiation-induced tissue reactions (deterministic effects) and to reduce the probability of cancer (stochastic effect) while maintaining the benefits to people and society from activities that generate radiation exposures (NCRP Report No. 180, 2018).

Type of limit Radiation worker Public
Stochastic limits Effective dose, whole body (mSv/year) 50 1
Deterministic limits Tissue absorbed dose (mGy/year)
Lens of the eye 50 15
Skin 500
Extremities (hands and feet) 500

Figure 2.  Values from NCRP Report No. 180, Management of Exposure to Ionizing Radiation:  Radiation Protection Guidance for the United States (2018).

The concept of dose limits also takes into account the ideas that any use of radiation should do more good than harm, and that permissible exposure should be maintained “as low as reasonably achievable” (ALARA).   In line with this philosophy, medical professionals strive to minimize medical radiation exposures to patients without compromising imaging quality and therapy effectiveness. 

Conclusion


Adverse health effects can occur after exposure to ionizing radiation.  For radiation protection, scientific advisory organizations have recommended dose limits to prevent deterministic effects and reduce the probability of stochastic effects in radiation workers, medical professionals, patients, and other members of the general public. 


Versant Physics is a full-service medical physics and radiation safety consulting company based in Kalamazoo, MI. Contact us for all of your regulatory, radiation safety, and personnel dosimetry needs.

Sources:

  1. https://hps.org/publicinformation/ate/faqs/regdoselimits.html
  2. https://www.nrc.gov/reading-rm/basic-ref/glossary/non-stochastic-effect.html
  3. https://www.nrc.gov/about-nrc/radiation/around-us/uses-radiation.html
  4. https://www.radioactivity.eu.com/site/pages/Deterministic_Effects.htm
  5. https://www.imagewisely.org/Imaging-Modalities/Computed-Tomography/How-to-Understand-and-Communicate-Radiation-Risk
  6. https://www.radiation-dosimetry.org/what-is-dose-limit-radiation-definition/