Category: Radiation Safety Officer

25 Feb 2022
CT radiation medical event

What are Radiation Medical Events and How to Prevent Them

The use of radiation in medicine via radiology, nuclear medicine, and radiotherapy helps detect and treat a variety of medical conditions in humans. It is a commonly used practice, with over 10 million procedures performed in the United States each year and thousands of lives saved as a result.

When radiation is administered improperly it is classified as a radiation medical event. A radiation medical event can occur when certain forms of radioactive sources are applied differently from what was intended or prescribed.

Although a radiation medical event does not necessarily result in harm to the patient, it does indicate that there is a potential problem in the medical facility’s use of radioactive sources (materials or equipment). An investigation into the event is required as soon as a medical event is suspected, typically by a clinical health physicist, as well as a written report documenting their findings.

What is a Radiation Medical Event?

The NRC defines an incident as a radiation medical event when (10 CFR 35.3045) the administration of byproduct material or radiation from byproduct material for, except permanent implant brachytherapy, results in—

  1. A dose that differs from the prescribed dose or dose that would have resulted from the prescribed dosage by more than 0.05 Sv (5 rem) effective dose equivalent, 0.5 Sv (50 rem) to an organ or tissue, or 0.5 Sv (50 rem) shallow dose equivalent to the skin; and
    1. The total dose delivered differs from the prescribed dose by 20 percent or more; or
    1. The total dosage delivered differs from the prescribed dosage by 20 percent or more or falls outside the prescribed dosage range; or
    1. The fractionated dose delivered differs from the prescribed dose for a single fraction, by 50 percent or more.
  2. A dose that exceeds 0.05 Sv (5 rem) effective dose equivalent, 0.5 Sv (50 rem) to an organ or tissue, or 0.5 Sv (50 rem) shallow dose equivalent to the skin from any of the following—
    1. An administration of a wrong radioactive drug containing byproduct material or the wrong radionuclide for a brachytherapy procedure;
    1. An administration of a radioactive drug containing byproduct material by the wrong route of administration;
    1.  An administration of a dose or dosage to the wrong individual or human research subject;
    1. An administration of a dose or dosage delivered by the wrong mode of treatment; or
    1. A leaking sealed source.
  3. A dose to the skin or an organ or tissue other than the treatment site that exceeds by:
    1. 0.5 Sv (50 rem) or more the expected dose to that site from the procedure if the administration had been given in accordance with the written directive prepared or revised before administration; and
    1. 50 percent or more the expected dose to that site from the procedure if the administration had been given in accordance with the written directive prepared or revised before administration.
  4. For permanent implant brachytherapy, the administration of byproduct material or radiation from byproduct material (excluding sources that were implanted in the correct site but migrated outside the treatment site) that results in—
    1. The total source strength administered differing by 20 percent or more from the total source strength documented in the post-implantation portion of the written directive;
    1. The total source strength administered outside of the treatment site exceeding 20 percent of the total source strength documented in the post-implantation portion of the written directive; or
    1. An administration that includes any of the following:
      1. The wrong radionuclide;
      1. The wrong individual or human research subject;
      1. Sealed source(s) implanted directly into a location discontiguous from the treatment site, as documented in the post-implantation portion of the written directive; or
      1. A leaking sealed source resulting in a dose that exceeds 0.5 Sv (50 rem) to an organ or tissue.
  5. Intervention of a patient or human research subject in which the administration of byproduct material or radiation from byproduct material results or will result in unintended permanent functional damage to an organ or a physiological system, as determined by a physician.

Radiation Medical Event Reports

Any of these medical events must be reported by telephone to the appropriate regulatory agency (i.e., Nuclear Regulatory Commission or Agreement State agency) no later than the next calendar day after discovery. A detailed written report, as described in 10 CFR 35.3045, must be submitted within 15 days after the discovery of the event. Such reports do not include information that could identify the affected patient as these reports are made available to the public.

medical event report

While medical events are accidental, it should be noted that a radiation medical event and a radiation accident are not the same things. Radiation accidents are defined as an event that “has led to significant consequences to people, the environment, or the facility,” such as a nuclear reactor core melt.

The purpose of medical event reporting is to initiate a process that will: (i) determine the root cause(s) and contributing cause(s); (ii) implement immediate corrective actions as may be necessary; (iii) identify preventative actions necessary to prevent a reoccurrence, and (iv) ensure appropriate notification of the patient and referring physician has occurred.  Additionally, the event may trigger the regulatory agency to alert other licensees to a potential problem that should be addressed.   

A medical event may indicate that there are problems within a facility that needs to be addressed. Communication problems, improper labeling, lack of training, and basic human error are all possible explanations.

An investigation into the technical aspects of the procedure, overall quality assurance practices (i.e., audits), and treatment delivery are required. A physician may also need to provide a separate analysis of potential injury or inadequate treatment to determine if any harm came to the patient because of the medical event.

Other medical event reports include:

  1. Report and notification of a dose to an embryo/fetus or a nursing child (10 CFR 35.3047) This includes an unintended dose to an embryo/fetus or a nursing child greater than 5 rem resulting from administration of a byproduct material to the mother/breast feeding individual. No report is required if the dose to the embryo/fetus was approved by the authorized user; or
  2. Report of a leaking sealed source (10 CFR 35.3067). The written report should include the model number, serial number, the radionuclide and its estimated activity, the date and results of the leak test, and the action taken.

How Are Patients Notified of a Medical Event?

NRC regulations state that it is the licensee’s responsibility to notify the exposed individual and their referring physician of the medical event within 24 hours of its discovery. If the notice is made verbally, the patient can request a written notification as well as access to the full report.

Severe events are rare, and harm is unlikely to befall a patient involved with a radiation medical event. However, it is important that the individual receive the appropriate medical care as soon as possible if needed.

Radiation Medical Events Can Be Prevented

With proper continuing education training, regular machine and technology upkeep, a working standard operating procedure, and efficient reporting systems, radiation medical events can be prevented.

It also helps to have a third-party consultant who can identify potential problems in your radiation safety program.

The team at Versant Physics is trained and equipped to help radiology departments and medical facilities prevent radiation medical events. Our board-certified medical and health physicists can help by performing acceptance testing of radiation-producing machines, conducting regulatory compliance audits, performing shielding evaluation and design calculations, and leading training opportunities.

Contact our regulatory team to discuss your radiation safety program needs.

Further Reading:

12 Aug 2021

A Step-by-Step Guide to Implementing a Radiation Safety Program

Implementing a radiation safety program is the best way to protect radiation workers and maintain safe radiological conditions in your clinic or university. If you are a new facility starting from scratch, implementing a radiation safety program can be an overwhelming task. We have put together a step-by-step guide to help clarify areas you will need to address.

Who Regulates What?

It is important for any new radiation safety program to understand which regulations to follow. The U.S. Nuclear Regulatory Commission (NRC) is responsible for regulating radioactive materials in the United States. However, they do not regulate radioactive material in any of the 37 Agreement States. These Agreement States have signed agreements with the state’s governor and the chair of the NRC that declare they take responsibility for all radioactive material regulation within the state. Agreement States can set their own rules for how radiation is monitored, handled, and used if they are at least as strict as the NRC.

Each state regulates the use of ionizing radiation generating equipment within the state. It is very important to research your individual state regulations.

For a list of individual state radiation control programs and their specific rules and regulations, we recommend visiting the Conference of Radiation Control Program Directors (CRCPD) website.

Step 1: Identify a Radiation Safety Officer

A Radiation Safety Officer is a required element of a radiation safety program.

According to AAPM Report 160, the RSO in a radiation safety program “is responsible for the implementation, coordination, and day-to-day oversight of the radiation protection program.” An RSO enforces policies and procedures regarding radiation safety and ensures the facility’s use of ionizing radiation is compliant with regulatory requirements, whether that be state or federal. These individuals are required to meet certain education, training, and experience requirements to assume the role.

The responsibilities of the RSO are many. In addition to managing the radiation safety program, this person will:

  • Provide advice and assistance on radiological safety matters,
  • Ensure safe use of radioactive materials,
  • Ensure compliance with regulatory and license requirements,
  • Identify radiation safety problems and correct them,
  • Ensure ALARA practices are enforced,
  • Perform audits and surveys of work areas as necessary,
  • Dose monitoring,
  • Instrument calibration,
  • And more.

Step 2: Get Copies of State and Federal Regulations

Federal regulations can be found on the NRC website. As mentioned above, most states have their own regulatory body. This may also be a good time to contact your state regulator and introduce yourself.

Step 3: Set-up Administrative Documents & QA Program

You will want to lay out the various roles in your radiation safety program in an organization chart. This includes management, IT, radiation safety resources, and additional radiation modalities and departments.

It will also be helpful to create a Standard Operating Procedure Manual on radiation protection that describes emergency procedures, training policies, and credentialing all radiation workers should be familiar with.

Step 4: Establish a Radiation Safety Committee

A radiation safety committee is typically made up of:

  • The RSO,
  • An authorized user of each type of use permitted by the license,
  • A nursing representative, and
  • A representative who is neither an authorized user nor the RSO.

Many universities and larger clinics find an RSC helpful for efficient radiation safety program management. However, they are not always mandatory depending on your use of radiation. You may find a radiation safety committee is not necessary for your facility.

Step 5: X-ray Room Shielding

Radiation Worker Behind Shielding

Facilities that utilize radiation are required to have a shielding plan developed by a qualified expert, such as a medical physicist. Most states also require the shielding plan to be submitted to the state before the equipment can be used.  

When setting up a radiation safety program, it will be necessary to contact an appropriate QE to put together the shielding plan. You will work with them to implement the appropriate materials and signage throughout your facility. Afterward, integrity and regulatory surveys must be performed to ensure compliance with area dose limits.

Step 6: Registration of Radiation Machines & RAM License Application

A new facility with new X-ray equipment must register each unit with the state, typically within 30 days of acquiring the unit. The use of X-ray-producing equipment is regulated on a state-by-state basis. The appropriate forms and required supporting documentation can be found on your state’s regulatory website or by contacting your regulator.

A new facility intending to use radioactive material must apply to either their Agreement State or the NRC for approval. In preparation for submitting the application, all the previous steps should be completed. Many of the items above will be reviewed along with the license application to determine approval status.

Note that some states may require radiation-producing machines to be inspected regularly by state-approved qualified experts to maintain a registration.

Step 7: Set-up a Personnel Monitoring Program

Licensees/Registrants are required to monitor radiation exposure of radiation workers to remain in compliance with occupational dose limits.

Instadose+ Dosimeter

It is important to set up a personnel monitoring program for radiation workers who regularly work with or could encounter radiation while on the job. These programs require personnel to wear a dosimeter badge which measures their total received exposure. RSO’s periodically review the personnel exposures.

There are a variety of dosimeter options available including TLDs, ring badges, and badges that provide on-demand dose reads.

Step 8: Recordkeeping

Implementing a radiation safety program means there will not be existing inspection reports, previous audits, or correspondence with regulators on file to familiarize yourself with. However, as the RSO, you will be responsible for maintaining all records regarding personnel exposure, exposure levels to the public, surveys, calibrations, and any maintenance completed on the facility’s X-ray equipment moving forward. Consult your state regulations to determine how long individual records need to be kept.

Conclusion

While there are many moving parts to setting up a radiation safety program, it is an important aspect of a safe workplace. Following these steps will have you well on your way to leading a successful program.

Our experienced radiation safety officers, health physicists, and medical physicists can help you implement a radiation safety program. Contact sales@versantphysics.com to be connected with a physicist or visit our regulatory page for more information.

Interested in becoming a Radiation Safety Officer yourself? Versant Physics offers a 20-hour online Medical Radiation Safety Officer course that teaches how to implement a successful, compliant radiation safety program. It will help you gain a practical understanding of regulations governing the safe use of radiation-emitting machines and radioactive materials, as well as responsibilities for managing radiation safety in a medical setting.

21 Jul 2021
online radiation safety course

The Mobile Radiation Safety Software Solution for the Modern RSO

Fieldwork is an essential component of radiation safety programs. From inventorying radioactive materials, machines, and equipment, to performing audits and inspections, there exists a need to capture real-time information while on the go.

Historically, this information would be recorded on paper forms and later transcribed to an electronic record or placed in a binder. Such methods are both outdated and time-consuming. Their very nature prohibits RSOs from accessing the most up-to-date records while traveling or on-site, and keeps them from streamlining effective administrative processes within their radiation safety programs.

But with the advent of mobile-optimized radiation safety software, performing these tasks and recording the results is more efficient than ever before.

In response to the growing awareness and need for such a software solution in radiation safety, Versant Physics has developed the cloud-based software Odyssey, with mobile optimization as a core focus. Users of the software can access Odyssey on their desktop or laptop computers, tablets, and mobile phones anywhere they have an internet connection.

odyssey screenshot of sealed sources

Versant Physics’ implementation analyst, Katelyn Waters, has seen multiple Odyssey clients incorporate the software into their fieldwork.

“Clients frequently use Odyssey to perform on-site inventories of RAM, sealed sources, radioactive waste, machines, and equipment. They use tablets and cell phones to quickly pull up inventory records by location. From there, individual profiles can be viewed and edited on the go as needed.”

These inventory records are displayed as a table with a simple and searchable format convenient for reviewing information on the smaller screens of mobile devices. Tables contain links to individual profiles with buttons to easily adjust the activity of radioactive materials, update survey, inspection, or calibration due dates, or edit other profile information.

Each profile also has the option to print out a physical label for the inventory. The label can include a logo, information from the profile, free text, and a unique QR code. The QR code can be scanned to take a user directly to a profile to increase speed and accuracy during an inventory.

“The biggest benefit of the QR code system that I see is the ability to perform cradle-to-grave tracking of RAM, sealed sources, and waste containers,” says Waters. “Users can scan the QR code attached to the material throughout its lifetime to view location, activity, and ownership changes to ensure that they are always accessing accurate, up-to-date information.”

odyssey qr code

These QR codes are available to be printed for RAM, sealed sources, waste containers, machines, equipment, and laboratories in Odyssey. Utilizing the labeling tools not only helps radiation safety staff quickly access information, but also complies with FDA and NRC labeling requirements for radioactive materials, machines, and laboratory doors.

“In addition to completing inventories, we also see our clients utilize the Forms module of Odyssey for audits, inspections, and surveys,” says Waters. “Customizable forms can be created which include images like floor plans. These forms can be filled out and the images marked up using mobile devices during the inspection itself.”

odyssey customizable form screenshot

The forms utilized during these inspections are custom forms set up during the implementation process by the Versant Physics team, or by an administrator. The same form can be filled out repeatedly for consistency and to track changes in responses over time. This standardization of forms is an essential aspect of radiation safety for quality control.

Another important consideration for data capture is efficiency. Odyssey aims to accomplish efficient data collection by prefilling data from its other modules into the form where applicable. This reduces the amount of time spent filling out the form and helps minimize the potential for human error as existing data does not need to be copied over.

Utilizing cloud-based software has become increasingly relevant as radiation safety programs move from paper-based methods to electronic solutions. Performing work in the field itself on mobile devices aids in getting records more efficiently into this desired electronic format. Odyssey is engineered to assist with this transition to increase data accessibility, efficiency, and accuracy for radiation safety programs.

Interactive demos are now available! Click here to try out the personnel dosimetry and inventory tracking modules for free!

You can also schedule a live demo with our software specialists to learn more about individual Odyssey modules, mobile features, and software usability.

08 Apr 2021
Radiation Worker Behind Shielding

ALARA: The Gold Standard of Radiation Protection

The ALARA principle is a relatively simple safety protocol designed to limit ionizing radiation exposure to workers from external sources.

This principle was established by the National Council on Radiation Protection and Measurements (NCRP) in 1954 in response to the atomic bombings of Hiroshima and Nagasaki and the increased interest in nuclear energy and weaponry post-WWII. The philosophy has been refined over the years by different regulatory agencies such as the Atomic Energy Commission (AEC) and Nuclear Regulatory Commission (NRC) as more knowledge about radiation and its effects on living tissue has come to light. In its current form, ALARA stands for “as low as reasonably achievable” and is considered the gold standard for radiation protection.

ALARA is based on the idea that any amount of radiation exposure, big or small, can increase negative health effects, such as cancer, for an individual. It is also based on the principle that the probability of occurrence of negative effects of exposure increases with cumulative lifetime dose. As such, the ALARA principle is considered a regulatory requirement for all radiation programs licensed with the NRC and any activity that involves the use of radiation or radioactive materials.

Check out VersantCast Episode 3: Linear No Threshold with Dr. Alan Fellman

To successfully implement ALARA principles in your radiation safety program, “it is important that every reasonable effort be made to maintain exposures to radiation as far below the dose limits in this part as is practical consistent with the purpose for which the licensed activity is undertaken, taking into account the state of technology, the economics of improvements in relation to state of technology, the economics of improvements in relation to benefits to the public health and safety, and other societal and socioeconomic considerations, and in relation to utilization of nuclear energy and licensed materials in the public interest.” (10 CFR 20.1003)

Time, Distance, and Shielding


There are three factors to the ALARA philosophy which, when executed correctly, can reduce and even prevent unnecessary exposure: time, distance, and shielding.

Time

Limit the amount of time spent near a radiation source. If you must work near a radioactive source, you should work as quickly as possible and then leave the area to avoid spending more time around the source than necessary.

Distance

Increase the distance between yourself and a radiation dose. The farther away you are, the lower the dose you will receive. In many cases, the dose rate decreases as the inverse square of the distance – when the distance is doubled, the dose rate goes down by a factor of four.

Shielding

Put a barrier between you and the radiation source. The type of barrier will depend on what kind of radiation source is being emitted but should be made of a material that absorbs radiation such as lead, concrete, or water. This can also include PPE such as thyroid shields and lead vests.

medical professionals implementing time, distance, and shielding principles

Conclusion


The ALARA principle has successfully limited exposures to workers—and patients undergoing medical procedures involving radiation—for several decades. Adhering to this principle as well as your state’s radiation safety regulations will result in keeping workers healthy and protected.

Visit our website for more information on how Versant Physics’ board-certified health physicists, medical physicists, and radiation safety officers can help you implement safe practices in your radiation safety program.

Sources

  1. https://nucleus.iaea.org/sites/orpnet/resources/frquentlyaskedquestions/Shared%20Documents/faq-list-en.pdf
  2. https://hps.org/publicinformation/ate/q8375.html
  3. https://www.cdc.gov/nceh/radiation/alara.html#shielding
  4. https://www.nrc.gov/reading-rm/basic-ref/glossary/alara.html
  5. http://large.stanford.edu/courses/2015/ph241/baumer2/
28 Jan 2021
Five Reasons Your Facility Needs a Radiation Safety Officer

Five Reasons Your Facility Needs a Radiation Safety Officer

A radiation safety officer is an individual responsible for radiation safety in a Nuclear Regulatory Commission (NRC) or Agreement State licensed program. They ensure that any activity involving radiation and radioactive materials is conducted safely to prohibit unnecessary exposure and that all licensed activities are conducted in compliance with both license and regulation requirements. Their responsibilities are varied and extensive, however, an RSO can generally expect to conduct reviews of occupational exposures, surveys and program audits, and lead radiation safety training sessions for authorized users, workers, and ancillary personnel. They are also in charge of spill response and contamination protocols, radioactive material transportation, storage, and disposal, and enforcing the ALARA (As Low as Reasonably Achievable) principle.

RSOs are frequently found in medical facilities that intentionally administer radioactive materials to patients in the form of X-ray and fluoroscopy procedures, radiopharmaceuticals (bone scan, stress test, PET/CT, etc), and radiation therapy. To perform these procedures, medical facilities are required to obtain a permit or license, either issued by the NRC or Agreement State, which an RSO must be listed on.

Medical x-ray machines.

But is an RSO needed for non-medical facilities as well?

In short, yes. Having an RSO on your team is not only beneficial for the overall safety of your clients and staff but is also a requirement of any licensed radiation safety program. We have outlined five reasons that will help you determine if your facility needs an RSO.

1. Your facility houses or utilizes radioactive materials, radiation-producing machines, and/or non-ionizing radiation sources such as lasers.


Specific regulations vary from state to state, however, if your facility utilizes any kind of ionizing or non-ionizing radiation source, you need a radiation safety program, and someone specifically trained to manage it.

In addition to overseeing the radiation safety program and all that entails, the RSO will keep an inventory of all material and machines located in your organization, ensure proper labeling, maintain current machine registrations, and ensure appropriate calibration and testing are performed regularly.

2. You need a highly trained individual who is well-versed in the U.S. NRC or state specific regulations that govern radiation safety and medical use of radioactive materials.


An RSO is properly trained on principles and practices of radiation protection, radiation measurement and monitoring, the biological effects of radiation, and more.

As part of their training, they are also familiar with the extensive regulations laid out by the U.S. Nuclear Regulatory Commission (NRC) or Agreement States. It is their duty to navigate these regulations for your organization to ensure compliance, and to keep on top of any updates that may impact your organization or its employees.

NRC Agreement States

3. You need someone to enforce radiation policies and procedures.


An RSO is granted the authority by management to enforce policies and procedures regarding radiation safety and regulatory compliance established in an organization’s radiation protection program or license. With all that is required of a safe, successful radiation protection program, you can rely on the RSO to make sure everything is in order and the rules are being followed by all participants.

4. You want to identify problems and implement corrective actions quickly.


Of course, accidents happen. Whether due to human error or technical malfunction, they are unavoidable. While we are all familiar with the devastating effects of radiation-related accidents, including those which occurred in the wake of nuclear accidents at Three Mile Island and Fukushima, these types of accidents are not likely to occur in your organization’s day-to-day activities. However, issues such as missing signs, incorrect labels, faulty shielding, or improperly calibrated instruments can not only cost your organization big fines but can pose direct health risks to you and your staff if left unchecked.

A designated RSO not only takes charge and initiates corrective actions during an emergency, but they are also responsible for investigating incidents and finding solutions to ensure such issues do not occur again. They are often the link between management and operations, alerting them to any problems that exist, and continually update and revise the policies laid out in their radiation safety program. They also perform regular safety training and program audits which are excellent ways to identify problem areas and terminate unsafe operations before they become a problem.

5. You want to protect your personnel from occupational radiation exposure risks.


Medical personnel are not the only ones at risk of occupational radiation exposure. Anyone who regularly uses or operates radiation-producing machinery, including researchers, manufacturers, and salespeople, can be exposed. If not properly controlled and monitored, these exposures can cause damage to the cells and genetic material and lead to serious health problems such as cataracts, temporary or permanent sterility, and cancer.

professionals at risk of occupational radiation exposure
Medical personnel are not the only ones at risk of occupational radiation exposure.

Although direct supervision of individuals using ionizing radiation is not typically a role of the RSO, the RSO is responsible for ensuring all authorized users and ancillary workers are properly trained in basic radiation safety and enforce control measures, such as shielding and personal protective equipment (PPE).

An RSO will also likely suggest a personnel monitoring program that assigns dosimeters to your staff and monitors their received radiation dose as well. In addition to advising on who and when individuals should be monitored, they will regularly monitor doses, manage declared pregnancies, and provide compliance reports.

See our post about using Odyssey to manage your personnel dosimetry program.

Next Steps


A properly trained individual, whether they are a licensed medical professional or not, can be added to a license as the RSO if they have successfully completed all the education and experience requirements of the current regulations and agree to be responsible for implementing the radiation safety program. Depending on their other professional responsibilities, they can serve as full or part-time. An RSO should also have excellent management and record-keeping skills and be comfortable with interacting with regulatory agencies.

Due to the extensive training and knowledge required for this role, many organizations choose to outsource this work. Versant Physics offers RSO and Regulatory support for traditional medical facilities such as hospitals and clinics, universities, small businesses, medical equipment manufacturers, and more. Whether you are looking for a consultant to assist on minor aspects of your program, on-site personnel to perform a program audit or survey, or you need help managing your personnel dosimetry program, our experienced, knowledgeable medical and health physicists, qualified experts, and support specialists can help.

Visit our regulatory page for a complete list of regulatory service offerings or contact sales@versantphysics.com to speak to a physicist about your unique program needs. 


References:

  1. Versant Medical Physics and Radiation Safety. Virtual MRSO Course. January 22, 2021. https://www.versantphysics.com/online-mrso-training
  2. 35.50 Training for Radiation Safety Officer and Associate Radiation Safety Officer. January 16, 2019. https://www.nrc.gov/reading-rm/doc-collections/cfr/part035/part035-0050.html
  3. “RSO Responsibilities” https://www.apnga.com/rso-responsibilities/
  4. AAPM Report No. 160. “Radiation Safety Officer Qualifications for Medical Facilities.” November 2010.
  5. https://www.osha.gov/ionizing-radiation

Versant Physics logo

Forum Article "Radiopharmaceutical Extravasation: Pragmatic Radiation Protection" published ahead of print

An article written by Versant team members Dr. Darrell R. Fisher, Ph.D. and Misty Liverett, M.S., CNMT was recently published ahead of print in Health Physics. The article provides an unbiased, scientific assessment of pragmatic and reasonable health physics actions that should be taken in response to inadvertent extravasation events. Click the link below to view the article.

Permits

THE PERMISSION SYSTEM FOR INVENTORY TRACKING, MACHINE MANAGEMENT & EQUIPMENT CATALOG MODULES

Permit Profile

Each permit has a dedicated profile of information that includes authorized personnel, radioactive material, machines, and devices. Permit conditions, completed audits, and forms are also found on this profile.

Authorized Condition Database

Create and view authorized conditions included on permits. Previously created authorized conditions are listed with their code, category, and description.

Permit Enforcement

Information specified on a permit not only serves as a record of that permit, but also controls what can be added to other modules. The location, owner and type of radioactive materials, machines, and equipment can be enforced by permits.

Permit Audits

Perform permit audits, mail the results to relevant personnel, and track responses to non-compliances.