Tag: radiation safety

20 May 2021
Smiling pregnant worker

Occupational Radiation Exposure & Pregnancy

Employees who become pregnant and work with radiation or radioactive materials during their pregnancy are often concerned about the safety of doing so, as well as the potential effects of radiation to their unborn child. Occupationally exposed workers are not required to declare a pregnancy to their employer. However, if they decide to declare there are dose limits that should be observed and additional protective measures that can be taken to protect both mom and baby.

Declaring a Pregnancy


In the United States, pregnant employees who work with or around radiation have the option of declaring their pregnancy. This declaration is voluntary and informs the worker’s employer in writing of their pregnancy as well as the estimated date of conception. This information is confidential and shared only with the employer and radiation safety officer, however, it is valuable for reducing exposure and allowing for close monitoring of both the employee and the baby throughout the pregnancy.

pregnant woman at a consultation

The NRC and States require licensees and registrants (i.e., the facility the employee works at) to make efforts to limit the declared pregnant worker’s received dose. This can mean that some normal job functions may not be permitted if doing those jobs would result in the fetus/embryo receiving more than 500 mrem. Employees also have the option to discuss with their employer or radiation safety officer about potential changes to their job status prior to declaring a pregnancy if they so choose. The option to revoke a declaration of pregnancy even if the worker is still pregnant is also available at any time throughout the pregnancy.

When an employee declares a pregnancy, they should sit down with their radiation safety officer for a one-on-one counseling session. This is a great opportunity to ask questions and address any monitoring or safety concerns that may arise. They are then issued a fetal dosimeter in addition to their regular monitoring device, which is worn at the hip or waist level. For procedures where a lead apron is worn, the dosimeter should be worn beneath it while the regular dosimeter is worn on the outside at the neck or collar. The fetal dosimeter is monitored monthly by the radiation safety officer to ensure that the regulatory fetal dose limits are not exceeded.

According to regulations, the lower dose limit for the embryo or fetus remains in effect until the worker withdraws the declaration in writing or is no longer pregnant. If it is not withdrawn, the original declaration expires after one year.

If an employee chooses not to declare their pregnancy, the employee and her baby are restricted to the standard occupational dose limits that apply to all occupationally exposed workers. The annual total effective dose equivalent (TEDE) for the whole body is 5,000 mrem. (10 CFR Part 20.)

Occupational Exposure


In most cases, the ways in which a pregnant woman may be occupationally exposed to radiation within regulatory limits are not likely to cause adverse health effects for the developing fetus.  However, most regulations are guided by the principle that any level of radiation can potentially result in negative biological effects and that the likelihood of such effects increases as the dose received increases.

The NRC requires licensees to “limit exposure to the embryo/fetus of an occupationally exposed individual to 500 mrem (5 mSv) or less during pregnancy for a declared pregnant worker who is exposed to radiation from licensed radioactive materials including radionuclides.” (10 CFR 20.1208) This lower dose limit is “based on a consideration of greater sensitivity to radiation of the embryo/fetus and the involuntary nature of the exposure.”  

Pregnant nurse on the phone with ipad

To break this down further, the regulations state that the radiation dose from occupational exposure should be limited to 500 mrem for the duration of the pregnancy and no more than 50 mrem per month. At this level, (1/10 the dose that a regular occupationally exposed worker may safely receive in a year) the risk of negative health effects is low. Pregnant workers can speak directly with their radiation safety officer or on-site medical or health physicist to determine the safest dose limits for their individual needs, which may depend on their exposure history and the types of jobs they perform on a regular basis.

Undergoing Medical Procedures While Pregnant


Occupational limits for declared pregnant workers do not apply to individuals who undergo diagnostic or therapeutic procedures, such as X-rays, fluoroscopy, or radiation therapy.

According to Robert Brent, MD, Ph.D. for HPS.org, diagnostic procedures of different parts of the body, such as the head, teeth, legs, or arms do not directly expose the fetus. Modern medical imaging procedures focus the X-ray beam only on the body part of interest, and the amount of radiation that could reach the embryo or fetus during these diagnostic procedures is small and unlikely to increase the risk of miscarriage or birth defects. Most procedures expose the developing fetus or embryo to less than 50 mSv, if at all. At this level of exposure, there is no cause for concern.

Regardless of pregnancy status, the ALARA principle should be implemented by the individual’s care team to guide decisions made about treatment and diagnostic procedures. A radiation safety officer or medical physicist can also help provide options to minimize dose. It should also be noted that those with fetal dosimeters should not wear their dosimeter during an X-ray or nuclear medicine procedure.

Conclusion


Ultimately, the decision to declare a pregnancy is that of the individual worker. Under the current safety guidelines, the risk for adverse health effects to an embryo or fetus posed by occupational exposure or medical procedures is low. However, employees should take advantage of the resources available such as the NRC regulations, literature provided by the Health Physics Society, and the expertise of their radiation safety officer and on-site medical or health physicist.


Sources

https://www.cdc.gov/nceh/radiation/emergencies/prenatalphysician.htm

https://www.nrc.gov/reading-rm/doc-collections/cfr/part020/index.html

https://hps.org/hpspublications/articles/pregnancyandradiationexposureinfosheet.html

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3835582/

Visit our website to learn more about Versant Physics regulatory services, including radiation safety officer support, personnel dosimetry, and more.

08 Apr 2021
X-ray Technician Behind Shielding

ALARA: The Gold Standard of Radiation Protection

The ALARA principle is a relatively simple safety protocol designed to limit ionizing radiation exposure to workers from external sources.

This principle was established by the National Council on Radiation Protection and Measurements (NCRP) in 1954 in response to the atomic bombings of Hiroshima and Nagasaki and the increased interest in nuclear energy and weaponry post-WWII. The philosophy has been refined over the years by different regulatory agencies such as the Atomic Energy Commission (AEC) and Nuclear Regulatory Commission (NRC) as more knowledge about radiation and its effects on living tissue has come to light. In its current form, ALARA stands for “as low as reasonably achievable” and is considered the gold standard for radiation protection.

ALARA is based on the idea that any amount of radiation exposure, big or small, can increase negative health effects, such as cancer, for an individual. It is also based on the principle that the probability of occurrence of negative effects of exposure increases with cumulative lifetime dose. As such, the ALARA principle is considered a regulatory requirement for all radiation programs licensed with the NRC and any activity that involves the use of radiation or radioactive materials.

Check out VersantCast Episode 3: Linear No Threshold with Dr. Alan Fellman

To successfully implement ALARA principles in your radiation safety program, “it is important that every reasonable effort be made to maintain exposures to radiation as far below the dose limits in this part as is practical consistent with the purpose for which the licensed activity is undertaken, taking into account the state of technology, the economics of improvements in relation to state of technology, the economics of improvements in relation to benefits to the public health and safety, and other societal and socioeconomic considerations, and in relation to utilization of nuclear energy and licensed materials in the public interest.” (10 CFR 20.1003)

Time, Distance, and Shielding


There are three factors to the ALARA philosophy which, when executed correctly, can reduce and even prevent unnecessary exposure: time, distance, and shielding.

Time

Limit the amount of time spent near a radiation source. If you must work near a radioactive source, you should work as quickly as possible and then leave the area to avoid spending more time around the source than necessary.

Distance

Increase the distance between yourself and a radiation dose. The farther away you are, the lower the dose you will receive. In many cases, the dose rate decreases as the inverse square of the distance – when the distance is doubled, the dose rate goes down by a factor of four.

Shielding

Put a barrier between you and the radiation source. The type of barrier will depend on what kind of radiation source is being emitted but should be made of a material that absorbs radiation such as lead, concrete, or water. This can also include PPE such as thyroid shields and lead vests.

medical professionals implementing time, distance, and shielding principles

Conclusion


The ALARA principle has successfully limited exposures to workers—and patients undergoing medical procedures involving radiation—for several decades. Adhering to this principle as well as your state’s radiation safety regulations will result in keeping workers healthy and protected.

Visit our website for more information on how Versant Physics’ board-certified health physicists, medical physicists, and radiation safety officers can help you implement safe practices in your radiation safety program.

Sources

  1. https://nucleus.iaea.org/sites/orpnet/resources/frquentlyaskedquestions/Shared%20Documents/faq-list-en.pdf
  2. https://hps.org/publicinformation/ate/q8375.html
  3. https://www.cdc.gov/nceh/radiation/alara.html#shielding
  4. https://www.nrc.gov/reading-rm/basic-ref/glossary/alara.html
  5. http://large.stanford.edu/courses/2015/ph241/baumer2/
28 Jan 2021
Five Reasons Your Facility Needs a Radiation Safety Officer

Five Reasons Your Facility Needs a Radiation Safety Officer

A radiation safety officer is an individual responsible for radiation safety in a Nuclear Regulatory Commission (NRC) or Agreement State licensed program. They ensure that any activity involving radiation and radioactive materials is conducted safely to prohibit unnecessary exposure and that all licensed activities are conducted in compliance with both license and regulation requirements. Their responsibilities are varied and extensive, however, an RSO can generally expect to conduct reviews of occupational exposures, surveys and program audits, and lead radiation safety training sessions for authorized users, workers, and ancillary personnel. They are also in charge of spill response and contamination protocols, radioactive material transportation, storage, and disposal, and enforcing the ALARA (As Low as Reasonably Achievable) principle.

RSOs are frequently found in medical facilities that intentionally administer radioactive materials to patients in the form of X-ray and fluoroscopy procedures, radiopharmaceuticals (bone scan, stress test, PET/CT, etc), and radiation therapy. To perform these procedures, medical facilities are required to obtain a permit or license, either issued by the NRC or Agreement State, which an RSO must be listed on.

Medical x-ray machines.

But is an RSO needed for non-medical facilities as well?

In short, yes. Having an RSO on your team is not only beneficial for the overall safety of your clients and staff but is also a requirement of any licensed radiation safety program. We have outlined five reasons that will help you determine if your facility needs an RSO.

1. Your facility houses or utilizes radioactive materials, radiation-producing machines, and/or non-ionizing radiation sources such as lasers.


Specific regulations vary from state to state, however, if your facility utilizes any kind of ionizing or non-ionizing radiation source, you need a radiation safety program, and someone specifically trained to manage it.

In addition to overseeing the radiation safety program and all that entails, the RSO will keep an inventory of all material and machines located in your organization, ensure proper labeling, maintain current machine registrations, and ensure appropriate calibration and testing are performed regularly.

2. You need a highly trained individual who is well-versed in the U.S. NRC or state specific regulations that govern radiation safety and medical use of radioactive materials.


An RSO is properly trained on principles and practices of radiation protection, radiation measurement and monitoring, the biological effects of radiation, and more.

As part of their training, they are also familiar with the extensive regulations laid out by the U.S. Nuclear Regulatory Commission (NRC) or Agreement States. It is their duty to navigate these regulations for your organization to ensure compliance, and to keep on top of any updates that may impact your organization or its employees.

NRC Agreement States

3. You need someone to enforce radiation policies and procedures.


An RSO is granted the authority by management to enforce policies and procedures regarding radiation safety and regulatory compliance established in an organization’s radiation protection program or license. With all that is required of a safe, successful radiation protection program, you can rely on the RSO to make sure everything is in order and the rules are being followed by all participants.

4. You want to identify problems and implement corrective actions quickly.


Of course, accidents happen. Whether due to human error or technical malfunction, they are unavoidable. While we are all familiar with the devastating effects of radiation-related accidents, including those which occurred in the wake of nuclear accidents at Three Mile Island and Fukushima, these types of accidents are not likely to occur in your organization’s day-to-day activities. However, issues such as missing signs, incorrect labels, faulty shielding, or improperly calibrated instruments can not only cost your organization big fines but can pose direct health risks to you and your staff if left unchecked.

A designated RSO not only takes charge and initiates corrective actions during an emergency, but they are also responsible for investigating incidents and finding solutions to ensure such issues do not occur again. They are often the link between management and operations, alerting them to any problems that exist, and continually update and revise the policies laid out in their radiation safety program. They also perform regular safety training and program audits which are excellent ways to identify problem areas and terminate unsafe operations before they become a problem.

5. You want to protect your personnel from occupational radiation exposure risks.


Medical personnel are not the only ones at risk of occupational radiation exposure. Anyone who regularly uses or operates radiation-producing machinery, including researchers, manufacturers, and salespeople, can be exposed. If not properly controlled and monitored, these exposures can cause damage to the cells and genetic material and lead to serious health problems such as cataracts, temporary or permanent sterility, and cancer.

professionals at risk of occupational radiation exposure
Medical personnel are not the only ones at risk of occupational radiation exposure.

Although direct supervision of individuals using ionizing radiation is not typically a role of the RSO, the RSO is responsible for ensuring all authorized users and ancillary workers are properly trained in basic radiation safety and enforce control measures, such as shielding and personal protective equipment (PPE).

An RSO will also likely suggest a personnel monitoring program that assigns dosimeters to your staff and monitors their received radiation dose as well. In addition to advising on who and when individuals should be monitored, they will regularly monitor doses, manage declared pregnancies, and provide compliance reports.

See our post about using Odyssey to manage your personnel dosimetry program.

Next Steps


A properly trained individual, whether they are a licensed medical professional or not, can be added to a license as the RSO if they have successfully completed all the education and experience requirements of the current regulations and agree to be responsible for implementing the radiation safety program. Depending on their other professional responsibilities, they can serve as full or part-time. An RSO should also have excellent management and record-keeping skills and be comfortable with interacting with regulatory agencies.

Due to the extensive training and knowledge required for this role, many organizations choose to outsource this work. Versant Physics offers RSO and Regulatory support for traditional medical facilities such as hospitals and clinics, universities, small businesses, medical equipment manufacturers, and more. Whether you are looking for a consultant to assist on minor aspects of your program, on-site personnel to perform a program audit or survey, or you need help managing your personnel dosimetry program, our experienced, knowledgeable medical and health physicists, qualified experts, and support specialists can help.

Visit our regulatory page for a complete list of regulatory service offerings or contact sales@versantphysics.com to speak to a physicist about your unique program needs. 


References:

  1. Versant Medical Physics and Radiation Safety. Virtual MRSO Course. January 22, 2021. https://www.versantphysics.com/online-mrso-training
  2. 35.50 Training for Radiation Safety Officer and Associate Radiation Safety Officer. January 16, 2019. https://www.nrc.gov/reading-rm/doc-collections/cfr/part035/part035-0050.html
  3. “RSO Responsibilities” https://www.apnga.com/rso-responsibilities/
  4. AAPM Report No. 160. “Radiation Safety Officer Qualifications for Medical Facilities.” November 2010.
  5. https://www.osha.gov/ionizing-radiation

04 Nov 2020
Odyssey's Personnel Dosimetry Management module

Manage Your Personnel Dosimetry Program with Versant Physics

Personnel Dosimetry is a key part of any radiation safety program. The dosimeter’s primary use is to determine doses to individuals who are exposed to radiation on the job by measuring the absorbed radiation energy. These devices are worn on the chest or abdomen, with specialized dosimeters available for other areas of the body such as the extremities.

Federal and State regulations mandate occupational exposure monitoring for a variety of reasons. These regulations can vary based on access to radiation or high radiation areas, quarterly or annual limits, or other requirements mandated by the regulating body.

There are dozens of reasons outside of these regulations why personnel dosimetry monitoring is important for the health and safety of occupationally exposed personnel, but it can be difficult to know where to begin when implementing your own program. There are regulations to navigate, staff to train on how to wear and read their badges, and the constant administrative upkeep required to monitor incoming dose reads and to ensure that your program is compliant.

Versant Physics specializes in personnel dosimetry program management, with a trained technical support team ready to tackle compliance issues and monitoring, badge administration—including initializing for new wearers, adding and removing wearers, read day reminders, and monthly reporting—and training.  

Instadose+ Dosimeter

“Our clients range from less than 10 badges to over 1000 badges, and include Instadose+, ring dosimeters, and TLD’s,” says Spencer Vanderweele, Versant Physics’ lead Technical Support Specialist. “It is important for our wearers to transmit readings on a regular basis to ensure each badge is functioning as expected. Regular readings also help us to confirm that each badged worker is following their ALARA practices to keep exposures as low as reasonably achievable.”

View how easy it is to read your Instadose+ badge here.

To manage the back end of dosimetry programs for all Versant Physics accounts, Vanderweele relies on the company’s proprietary software Odyssey. The cloud-based software was designed to simplify every aspect of a radiation safety program, with an entire module devoted to personnel dosimetry.

“With Odyssey we can view exact numbers at a glance, or dive deep into records if there are ever any concerns,” says Vanderweele. “I utilize the Personnel Dosimetry module to manage most accounts, and consistently find myself diving into the records through the Query Builder. This feature allows you to set your own parameters for record results based on active participants and allows you to filter out participants who required updated readings to more easily follow up.

Odyssey's Query-builder
Odyssey’s Query-builder feature.

“The new Form Generator has [also] been an incredible help. This feature allows the user to pull Form-5s, pre-sign, and even email directly to participants all from one page! This saves me or the RSO time (and their wrist!) by allowing us to pre-sign thousands of documents with the click of a button!”

The module is made up of a series of customizable widgets that allow users to visualize pre-set metrics for at-a-glance monitoring. Users can view recent logins and read activity, latest abnormal readings, and set up a User Watch List for wearers likely to exceed internal or annual dose limits. These features, including the Query-Builder and Form Generator, simplify and streamline the badge management process for the busy RSO or badge administrator.

Odyssey's Personnel Dosimetry Management module
Odyssey’s Personnel Dosimetry module dashboard.

In fact, Vanderweele says, without Odyssey, managing a single client would likely be a team effort.

“It would have a tremendous impact on the timeliness of our client response and ability to provide relevant, up-to-date information. Simply counting the number of individual badges, of all types, would be a huge task on its own without Odyssey. I know because Odyssey was not available to me when I first started at Versant Physics. But now, Odyssey allows me to put together complex and specific reports with ease, all while managing several accounts.”

The benefits of using a seasoned badge management team like Versant Physics, combined with the efficient power of Odyssey, are numerous. “Versant Physics’ background allows us to cater to our client’s specific needs,” says Vanderweele. “From our regulatory expertise to our technical support systems, Versant Physics will take the guess work out of your radiation safety program.”

Contact sales@versantphysics.com to learn more about our personnel dosimetry management process, to order badges, and pricing details.

Happy Holidays!

10% off

Our gift to you this holiday season. Enjoy 10% off our entire catalog of online courses, including MRSO, Fluoroscopy, Medical X-ray, and DOT Training.

Permits

THE PERMISSION SYSTEM FOR INVENTORY TRACKING, MACHINE MANAGEMENT & EQUIPMENT CATALOG MODULES

Permit Profile

Each permit has a dedicated profile of information that includes authorized personnel, radioactive material, machines, and devices. Permit conditions, completed audits, and forms are also found on this profile.

Authorized Condition Database

Create and view authorized conditions included on permits. Previously created authorized conditions are listed with their code, category, and description.

Permit Enforcement

Information specified on a permit not only serves as a record of that permit, but also controls what can be added to other modules. The location, owner and type of radioactive materials, machines, and equipment can be enforced by permits.

Permit Audits

Perform permit audits, mail the results to relevant personnel, and track responses to non-compliances.