Category: Radiation Safety

27 Oct 2021
Small cute dog examined at the veterinary doctor, close-up

Radiation Dosimetry for Animal Subjects 

This brief article describes ways in which Versant Medical Physics and Radiation Safety supports veterinarians and laboratory scientists who work with animal patients and laboratory research animals. Dosimetry is the science of measuring radiation and determining the amount of radiation energy that is imparted to living tissues. Radiation dosimetry is helpful in many medical science applications, such as correlating dose with biological effect, diagnosing disease, and planning radiation therapy for cancer treatment.  



Nuclear medicine is a fundamental medical specialty in radiology.  In nuclear medicine, radiologists administer radioactive drug products to patients to diagnose and treat many different health conditions.

In the healthcare setting, radiation dosimetry helps doctors to better understand the complex relationships between the amount (activity) of a radiopharmaceutical administered and the drug product’s biodistribution and metabolism in the body–such as its localization, retention, and clearance patterns. 

The biological behavior of the pharmaceutical inside the patient can be imaged using modern radiation-detection systems in two or three dimensions. The localized uptake of a radiopharmaceutical can indicate the function of organs, such as the heart, brain, liver, and kidneys (among others), and is particularly helpful in diagnosing cancer.

Radiation dosimetry provides the fundamental quantities used for radiation protection, risk assessment, and treatment planning. 

Animal subjects and humans are similar biologically in many ways. Therefore, different animal species may also be diagnosed and treated using the same or similar radiopharmaceuticals given to humans. And laboratory animals help researchers develop and test new drug products to ensure their safety and efficacy. Internal radiation dosimetry for animals has therefore become an important subspecialty of nuclear medicine physics.

Fundamental principles

Basic physics methods for internal radiation dosimetry are similar for animal and human models. Differences include the size and geometry of source-target organ pairs. Source organs are the internal organs for which images have been acquired or for which measurements have been made to determine the specific uptake, retention, and clearance patterns for the radioisotope. 

Target organs are the organs and tissues for which radiation doses are calculated. Recognizing the important size and metabolic rate differences among species, care must be taken by the nuclear medicine physicist to use correct calculation methods and the most relevant animal model.

Common animal species

In veterinary medicine, pet owners take their animals to clinics for evaluation and treatment of cancer, hyperthyroidism, and organ function.  The most common species include dogs, cats, and horses. In laboratory research, scientists use normal and immunodeficient mice, rats, rabbits, and sometimes dogs, monkeys, and miniature pigs.

Most biomedical research involves mice because they are less expensive, more easily housed and fed, and more efficiently bred for certain desirable genetic or mutational characteristics. Experiments with mice can also be accomplished in shorter time periods and with greater numbers for statistical purposes than other animal species. 

Optimizing radiation dose for diagnostics or cancer treatment

Radiation dosimetry guides the veterinarian when choosing the right amount of radiopharmaceutical for a specific purpose. Every radionuclide in the chart has unique energy emission characteristics, half-life, and chemistry for applications as drug products. Some radionuclides are good for imaging in the clinic, whereas others are more appropriate for therapeutics. For each type, dosimetry is important to determine the characteristics that provide either the most useful images or the most effective treatment.

In both diagnostic imaging and cancer treatment, which are subspecialties of nuclear medicine physics, a balance must be achieved between administering too much or too little. Too little diagnostic drug renders poor images, too much radionuclide results in poorer quality images, making medical interpretation all the more difficult. In cancer therapy, too little radionuclide may result in an ineffective therapy, whereas too much radionuclide may result in undesirable normal tissue toxicity. 

Excessive radionuclide handling in the pharmacy or clinic may also present an unnecessary radiation hazard to staff—or to pet owners, post-treatment. Radiation dose assessment helps veterinarians and research teams investigate the safest and most effective use of radiopharmaceuticals for the diagnosis and treatment of many disorders in animal subjects.

Dosimetry methods and models

For more than 50 years, specific methods and models for internal organ and tumor dose assessment have been developed by the special committee on Medical Internal Radiation Dose (MIRD) of the Society of Nuclear Medicine and Medical Imaging as a technical resource for both physicians and physicists.  The virtue of the MIRD approach is that it systematically reduces complex dosimetric analyses to methods that are relatively simple to use, including software tools for experimental and clinical use. 

Radiopharmaceutical dosimetry accounts for both physical and biological factors.  Methods for internal radiation dosimetry tackle the challenge of assessing dose for many different radionuclides—each with its unique radiological characteristics and chemical properties as labeled compounds—in the highly diverse biological environment represented by the living body, internal organs, tissues, fluid compartments, and microscopic cells.  Methods developed for human internal dosimetry are readily adaptable to animal subjects–taking into account the differences in size, geometry, and metabolic rates.

Why Versant Physics provides medical internal radiation dosimetry for animal subjects

Dogs, cats, and horses can be diagnosed and treated with radiopharmaceuticals for cancer and some non-malignant growths or overactive thyroid glands. Pet owners have often developed close family-like relationships with their pets, and veterinary care can be essential for preserving the animal’s health and well-being.  

The development and testing of new radiopharmaceuticals usually begin with laboratory studies in mice. When promising results are achieved in mice, the investigators may advance to dog studies or even early clinical trials in humans, if approved by the Food and Drug Administration (FDA).

The FDA expects reliable and trustworthy radiation dosimetry for safety and efficacy evaluations. These assessments may rely on careful extrapolation of dosimetry results in animals to humans before drug trials can be approved for human patients.


Learn more about Dr. Darrell Fisher and his work in nuclear medicine physics here. Contact Versant Physics for your clinical dosimetry and personnel dosimetry needs.

20 Oct 2021
Odysser Reporting Module

Odyssey “How To” Series: Reporting Module

Join us for our third interview with Odyssey Implementation Analyst Katelyn Waters, where we discuss how to carry out certain functions of the Reporting module and answer some of your frequently asked questions.

Odyssey is a radiation safety software suite designed to help RSOs, EHS managers, and Radiation Safety Specialists manage affordable and efficient programs.

KB 0:10: Welcome to part 3 of our twelve-week how-to series highlighting Odyssey radiation safety software. Today we’re back with Odyssey Implementation Analyst Katelyn Waters to talk about the Reporting Module. Like the previous two weeks, we’ll be looking at some frequently asked questions we get about the module’s functionality and its use in generating reports. Katelyn, can you get us started by telling us what kind of reports are included in the reporting module?

Katelyn 0:35: Absolutely. To begin, the reporting module is one of 12 modules of Odyssey, which is what we’re looking at on our screen right now. And if I do select it here to actually go into the module, we have a Generate Reports section, which is what we’ll focus on for today’s call.

And reporting is really great because it is going to allows you to pull data from the other modules of Odyssey. If I select the report type drop down, we can see some examples of that. So, I have different radioactive materials reports that I can generate from here. I can also generate reports on my labs or areas that hold those materials, different users of the software and data associated with them, any permits or audits, as well as all of my inventory that’s in the system such as different machines, equipment, and waste management. So there’s really a lot of different options that you have for your report types once you’re in reporting.

KB 01:34: What if I want to change any of these reports, or even create my own. Can I do that?

Katelyn 01:39: Excellent question. Depending on which report you choose, you actually have different filters that are going to be available for your selection. I just chose the machines report as an example, and I have these additional filters that pop up called site, owner, permit, and template. And if I do select another one here, you can see I have different options so I have some different date fields at the bottom I can filter by.

Each of those are going to be different depending on your report. You also have the ability to include additional information or exclude any of the default information that’s going to be in the report. So for this machines report, if I want to include additional information about any of my types of machines such as the X-ray, Laser, or Non-Ionizing machines we have on this example account, I can do so. I just have to select one as my template. Then I have the ability to come here and pick which of the fields of information I want to include.

These are all custom fields that I set up for my X-ray group, and I can choose to include any of that information in the report. I can also exclude any default information. So, if I scroll down, this section right here includes information that was already going to be included on the report by default, and I can get rid of any that if I’m not interested in seeing that in my end report. Just go ahead and uncheck those and then we’ll be ready to generate it with all of our customizations.

KB 03:06: So, once I am done creating my report, how do I go about sending it to other people?

Katelyn 03:12: You have a few different options here. I’ll go ahead and generate the report so we can see a couple of those. And once I do hit the Generate Report button it’s going to display that report on screen for us at the very bottom. So, it says Machines report and then I have everything broken down by my different groups. On this one, we just included the X-ray machines, but if I were to have included lasers or non-ionizing they’ll be present in different sections as well.

And then you can see the different column choices that we made are going to be displayed in this table. So, you as the user can see this right away. But, in terms of your question in distributing this to others, you have two different buttons here where you can view and download this report as different file types. So, you can get a CSV file for use in Excel or a PDF, and those you can have and distribute either via email yourself, through a different email service, or you can put that onto a file-sharing site, whatever your preference is.

We also give you the ability to directly email that information out. So, if I come back to the top we have this Email Report tab. I can select from a list of existing users of Odyssey, so these are all going to be people on our demo account, so that’s why they have the interesting emails that they do. And, once I select those individuals, they’re going to be on my recipient’s list to receive this report. I can also type in an email address manually as well. Once I do that, these people I can email the report then via this email report button, and it’ll send that as a PDF attachment to them.

The other option we have is an automated report. So I can come in and add an automated report and what that’s going to do is allow you to set up a certain frequency which you want to email this same report to the same people. If you have a group of managers, for instance, that you want to email their inventory each month, this would be a great way to set that up. Once you set it up once, you don’t have to continually come into the software to generate and email those reports. Odyssey takes care of that and will send it to them on the proper frequency, once again as a PDF attachment in that email.

KB 5:20: And is there a way for me to change the format of the report?

Katelyn 5:24: Yes. So, we have one example here, which I’ll go ahead and show you. We have a PDF Template system, which is what this drop-down menu is for. And you’ll probably also recall that was one of the three sections of this module, we had a Generate Reports section, a PDF Templates, and a Mailing. The PDF Templates will allow you to create different formats for the PDF that you want to generate.

So, we have a Versant Physics one that we’ve created as an example. I’ll go ahead and recreate that report with the PDF Template applied. And, it includes then a Versant logo at the top, as well as we’ve added in some footer information with Versant’s contact info. This is pretty customizable for what you can include. It basically allows you to create any header and footer that you want. So you have the ability to include different text, different images, if you want to include a proprietary symbol you could also do that, for example. But it’s pretty common, and I see a lot of our clients really utilize it to add their logo in at some point in the PDF, as well as any additional footer information that they need to. And that’s just a way to create a more polished report for distributing to others.

KB 06:35: Do you have to be a licensed Odyssey user to actually view these reports?

Katelyn 06:43: I’m glad that you asked that. It’s something that comes up very frequently. You do not, which is a real strength, I think, of this module. I highly recommend that for people who just need to have information distributed to them from the software, that you do so via reporting. It really cuts down on the number of licenses that you might need, if they don’t need to interact with that data at all, but just need to have it to view, it’s a great way to get that information out to them via the email report tab here. You can type in their email address manually to this box, you can also have things added on file so you can pull that from the list of uses if you want to. But, it’s a great way to distribute that out, and like I said, it comes as a PDF attachment and they don’t need any additional permissions in order to view that data.

KB 07:34: And that wraps up our list of frequently asked questions for the Reporting module. Thanks again Katelyn for walking through the module with me and clarifying how administrators can use it to effortlessly create reports on their Odyssey data.


Schedule an in-depth demo with our Odyssey team to discuss how the software can assist you with your radiation safety management needs.

24 Aug 2021

The Seven Most Influential Women in Radiation History

The role of women in science is often overlooked. However, the research and discoveries of these brilliant minds have drastically altered commonly held theories in particle physics, chemistry, and nuclear medicine, and contributed to our modern understanding of radiation. In this post, we highlight seven of the most influential women in radiation history and their outstanding accomplishments.

Marie Curie (1867-1934)


Madame Marie Curie was a physicist and chemist whose pioneering research in radioactivity won her two Nobel Prizes in two scientific fields. In addition to her groundbreaking work in nuclear physics and chemistry, she developed the mobile X-ray unit which was first used to diagnose injuries during World War I.

Born in Poland in 1867, Curie moved to France to study physics, chemistry, and math at the University of Paris in 1891. There she met her future husband and research partner Pierre Curie. She earned two degrees from the institution, one in 1893 and another in 1894.

In 1903, Curie and her husband received the Nobel Prize for their joint research in radioactivity alongside Henri Becquerel. They were responsible for the discovery of new elements radium and polonium which came from the radioactive mineral pitchblende, now commonly known as uraninite. She was the first woman to win the Nobel Prize.

In 1910, she was successful in producing radium as a pure metal, further proving the element’s existence, and was awarded her second Nobel Prize in Chemistry in 1911.

Curie served in World War I as the director of the Red Cross Radiology Service. She created small, mobile X-ray units called “Petite Curies” which were vehicles containing an X-ray machine and darkroom equipment. She trained over 150 women to operate the units which ultimately helped treat over one million soldiers near the battlefront.

Curie died in 1934 of aplastic anemia, likely a result of her work with radiation.  

Awards & Recognition

  • 1903 – Received the Nobel Prize in Physics (with her husband Pierre Curie and Henri Becquerel)
  • 1911 – Awarded the Nobel Prize in Chemistry
  • 1920 – Became the first female member of The Royal Danish Academy of Sciences and Letters
  • 1924 – Became an Honorary Member of the Polish Chemical Society
  • Received 4 honorary doctorates from Polish universities
  • The radioactivity unit “curie” is named in honor of Marie and Pierre Curie
  • Element 96 was named curium

Lise Meitner (1878-1968)


Dr. Lise Meitner was an Austrian-Swedish physicist who helped discover the element protactinium-231 and nuclear fission. She received her doctorate in physics—the second woman to do so—at the University of Vienna in 1906. In 1926 she became Germany’s first female professor of physics, a role she held until the rise of Nazi Germany and the Nuremberg Laws forced her to flee to Sweden to escape religious persecution.

She worked closely with Otto Hahn, a prominent chemist, throughout the years. Their work on discovering isotopes resulted in the introduction of protactinium-231.

In 1939, Dr. Meitner coined the term “fission” after discovering that uranium atoms split when bombarded with neutrons. Her role in this major discovery, which allowed for nuclear energy and nuclear bombs, was overlooked by the Nobel Prize committee, and the award was given exclusively to Otto Hahn in 1944. Because of this discovery, she was invited to work on the Manhattan Project, however, she opposed the atomic bomb and declined the offer. She was ultimately nominated for the Nobel Prize 48 times for physics and chemistry projects but never won.

She was a strong supporter of women in science and spent the last half of her life traveling and speaking to female students.

Awards & Recognition

  • 1925 – Awarded the Lieben Prize from the Austrian Academy of Sciences
  • 1944 – Named “Woman of the Year” by the Women’s National Press Club in Washington D.C.
  • 1945 – Became a foreign member of the Royal Swedish Academy of Sciences
  • 1954 – Awarded the inaugural Otto Hahn Prize of the German Chemical Society
  • 1966 – She was awarded the Enrico Fermi Award alongside chemists Otto Hahn and Fritz Strassmann for her “pioneering research in the naturally occurring radioactivities and extensive experimental studies leading to the discovery of fission”
  • 1997- The chemical element meitnerium was named in her honor

Irene Joliot-Curie (1897-1956)


Irene Joliot-Curie was a chemist and physicist known for her work on natural and artificial radioactivity, transmutation of elements, and nuclear physics.  

She was born in Paris, France in 1897 to Marie and Pierre Curie. She studied chemistry at the Radium Institute and completed her Ph.D. in chemistry from the University of Paris. Her doctoral thesis focused on radiation emitted by polonium.

During World War I, Irene worked alongside her mother on the battlefield as a nurse radiographer. For a time, she also taught doctors how to locate shrapnel in soldiers using radiological equipment.

Alongside her husband, chemical engineer Frederic Joliot, Irene studied atomic nuclei. Together they were the first to calculate the accurate mass of the neutron and discovered that radioactive elements can be artificially produced from stable elements. The pair shared the 1935 Nobel Prize in Chemistry in recognition of this discovery, which had practical applications in radiochemistry, specifically in medicine and the treatment of thyroid diseases. In addition, her research on the action of neutrons on heavy elements was an important step in the discovery of nuclear fission.

Outside of her research, Irene was the Chair of Nuclear Physics at the Sorbonne and a Professor in the Faculty of Science in Paris. Beginning in 1946 she served as the director of the Radium Institute and was instrumental in the design of the Institute of Nuclear Physics in Orsay, France. She died in 1956 of leukemia, likely a result of her work with polonium-210.

Awards & Recognition

  • 1935 – Received the Nobel Prize in Chemistry for the discovery of artificial radioactivity (with Frederic Joliot-Curie)
  • 1940 – Received the Barnard Gold Medal for Meritorious Service to Science (with Frederic Joliot-Curie)
  • Was an Officer of the Legion of Honour

Edith Quimby (1891-1982)


Edith Quimby was a pioneer in the field of radiation physics, a founder of nuclear medicine, and is considered the first female medical physicist in the United States.

She was born in 1891 in Rockford, Illinois, and earned degrees in physics and mathematics from Whitman College and the University of California, Berkeley. Much of her early work at the Memorial Hospital for Cancer and Allied Diseases in New York focused on the medical effects of radiation and limiting side effects with proper dosages. Furthermore, she was also interested in the safe application of radioactive isotopes in the treatment of thyroid disease, brain tumors, and other cancers.

Edith Quimby helped found the Radiological Research Laboratory at Columbia University, was the first female physicist president of the American Radium Society and was influential in the founding of the American Association of Physicists in Medicine. She was a professor at both Cornell University Medical College and Columbia University, and she authored several books throughout her career, including the classic Physical Foundations of Radiology (1944), and over 70 scientific papers.

Awards & Recognition

  • 1940 – Recipient of the Janeway Medal from the American Radium Society
  • 1941 – Awarded the Gold Medal of the Radiological Society of North America
  • 1963 – Awarded the Gold Medal from the American College of Radiology
  • AAPM established a lifetime achievement award in her honor

Tikvah Alper (1909-1995)


Tikvah Alper was a renowned radiobiologist and physicist whose work on identifying the infection agent in Scrapie revolutionized scientific understanding of diseases like mad cow disease and kuru.

She was born in 1909 in South Africa and graduated with a distinction in physics from the University of Cape Town in 1929. She was mentored by Lise Meitner as a doctoral student in Berlin from 1930 to 1932 where she published an award-winning paper on delta rays produced by alpha particles.

In addition to her life as a mother and homemaker, she was a physics lecturer at Witwatersrand University and researched in Britain on the irradiation of bacteriophage. She became head of the Biophysics Section in South Africa’s National Physics Laboratory; however, she was forced out of this position in 1951 due to her opposition to apartheid. Afterward, she moved to London with her family and worked her way up to director of Hammersmith Hospital’s MRC Experimental Radiopathology Research Unit in 1962.

Alper found that radiation did not kill the infective agent in Scrapie, an infectious brain disease found in sheep. Instead, by irradiating scrapie samples with different wavelengths of UV light, Alper was able to prove the infective agent was able to replicate despite its lack of nucleic acid. This work became extremely important during Britain’s Mad cow disease outbreak in the 1990s.

Chien-Shiung Wu (1912-1997)


Chien-Shiung Wu, also known as the “First Lady of Physics,” was a Chinese American particle and experimental physicist who worked on the Manhattan project and played an important role in the advancement of nuclear and particle physics.

Madame Wu was born in 1912 in Shanghai. She received a degree in physics from what is now known as Nanjing University and later enrolled at the University of California, Berkeley where she completed her Ph.D. She worked as a physics instructor at Princeton University and Smith College before joining the Manhattan Project in 1944. Her work at the Substitute Alloy Materials Lab was meant to support the gaseous diffusion program for uranium enrichment. Her research also improved Geiger counters for radiation detection.

As a leading physicist on beta decay, Madame Wu was able to confirm Enrico Fermi’s 1933 theory of beta decay. She was also responsible for disproving “the law of conservation of parity” in what is known as the Wu Experiment. In this experiment, she measured the small particles released from cobalt-60 atoms and found that they were emitted asymmetrically. This proved the theory that parity is not reserved for beta decay, vastly altering long-held beliefs in the physics community.

Awards & Recognition

  • 1958 – Became the 7th female member elected to the National Academy of Sciences
  • 1964 – Was the first woman to win the Comstock Prize in Physics from the National Academy of Sciences
  • 1975 – Became the first woman president of the American Physical Society
  • 1975 – Honored with the National Medal of Science
  • 1978 – Received the first Wolf Prize in Physics
  • 1990 – 2753 Wu Chien-Shiung asteroid was named after her
  • Held honorary degrees from Harvard University, Dickinson College, University of South Carolina, University of Albany, SUNY, Columbia University, and National Central University

Rosalind Franklin (1920-1958)


Rosalind Franklin was a chemist and X-ray crystallographer who is best known for her work on the structure of DNA, RNA, and coal. She also performed cutting-edge research on the molecular structure of viruses that cause plant and human diseases.

Franklin was born in London, England in 1920. She studied physical chemistry at Newnham Women’s College at the University of Cambridge. During World War II, Franklin researched the physical chemistry of coal and carbon under the British Coal Utilisation Research Association. By studying the porosity of coal, she concluded that substances were expelled in order of molecular size as temperature increased. This work was important for accurately classifying and predicting coal performance for fuel and wartime production and served as her Ph.D. thesis.

After the war, Franklin accepted a position as a research fellow at King’s College London. During this time, she investigated DNA samples. She took clear x-ray diffraction photos of DNA and was able to conclude that the forms had two helices. Her work–specifically her image Photo 51–was the foundation of James Watson and Francis Crick’s discovery that the structure of DNA was a double-helix polymer, for which she was not cited or credited.

Afterward, she continued working with x-ray diffraction photos of viruses at the J.D. Bernal’s crystallography laboratory at Birkbeck College and collaborated with virus researchers from around the world. She studied RNA of the tobacco mosaic virus and contributed to published works on cucumber virus 4 and turnip yellow mosaic virus.

During her career, she published 19 articles on coal and carbons, 21 on viruses, and 5 on DNA.

Versant Physics is proud to be a woman-owned company at the forefront of the medical physics and radiation safety industry. To learn more about our physicists and service offerings, visit our regulatory page.

12 Aug 2021

A Step-by-Step Guide to Implementing a Radiation Safety Program

Implementing a radiation safety program is the best way to protect radiation workers and maintain safe radiological conditions in your clinic or university. If you are a new facility starting from scratch, implementing a radiation safety program can be an overwhelming task. We have put together a step-by-step guide to help clarify areas you will need to address.

Who Regulates What?

It is important for any new radiation safety program to understand which regulations to follow. The U.S. Nuclear Regulatory Commission (NRC) is responsible for regulating radioactive materials in the United States. However, they do not regulate radioactive material in any of the 37 Agreement States. These Agreement States have signed agreements with the state’s governor and the chair of the NRC that declare they take responsibility for all radioactive material regulation within the state. Agreement States can set their own rules for how radiation is monitored, handled, and used if they are at least as strict as the NRC.

Each state regulates the use of ionizing radiation generating equipment within the state. It is very important to research your individual state regulations.

For a list of individual state radiation control programs and their specific rules and regulations, we recommend visiting the Conference of Radiation Control Program Directors (CRCPD) website.

Step 1: Identify a Radiation Safety Officer

A Radiation Safety Officer is a required element of a radiation safety program.

According to AAPM Report 160, the RSO in a radiation safety program “is responsible for the implementation, coordination, and day-to-day oversight of the radiation protection program.” An RSO enforces policies and procedures regarding radiation safety and ensures the facility’s use of ionizing radiation is compliant with regulatory requirements, whether that be state or federal. These individuals are required to meet certain education, training, and experience requirements to assume the role.

The responsibilities of the RSO are many. In addition to managing the radiation safety program, this person will:

  • Provide advice and assistance on radiological safety matters,
  • Ensure safe use of radioactive materials,
  • Ensure compliance with regulatory and license requirements,
  • Identify radiation safety problems and correct them,
  • Ensure ALARA practices are enforced,
  • Perform audits and surveys of work areas as necessary,
  • Dose monitoring,
  • Instrument calibration,
  • And more.

Step 2: Get Copies of State and Federal Regulations

Federal regulations can be found on the NRC website. As mentioned above, most states have their own regulatory body. This may also be a good time to contact your state regulator and introduce yourself.

Step 3: Set-up Administrative Documents & QA Program

You will want to lay out the various roles in your radiation safety program in an organization chart. This includes management, IT, radiation safety resources, and additional radiation modalities and departments.

It will also be helpful to create a Standard Operating Procedure Manual on radiation protection that describes emergency procedures, training policies, and credentialing all radiation workers should be familiar with.

Step 4: Establish a Radiation Safety Committee

A radiation safety committee is typically made up of:

  • The RSO,
  • An authorized user of each type of use permitted by the license,
  • A nursing representative, and
  • A representative who is neither an authorized user nor the RSO.

Many universities and larger clinics find an RSC helpful for efficient radiation safety program management. However, they are not always mandatory depending on your use of radiation. You may find a radiation safety committee is not necessary for your facility.

Step 5: X-ray Room Shielding

Radiation Worker Behind Shielding

Facilities that utilize radiation are required to have a shielding plan developed by a qualified expert, such as a medical physicist. Most states also require the shielding plan to be submitted to the state before the equipment can be used.  

When setting up a radiation safety program, it will be necessary to contact an appropriate QE to put together the shielding plan. You will work with them to implement the appropriate materials and signage throughout your facility. Afterward, integrity and regulatory surveys must be performed to ensure compliance with area dose limits.

Step 6: Registration of Radiation Machines & RAM License Application

A new facility with new X-ray equipment must register each unit with the state, typically within 30 days of acquiring the unit. The use of X-ray-producing equipment is regulated on a state-by-state basis. The appropriate forms and required supporting documentation can be found on your state’s regulatory website or by contacting your regulator.

A new facility intending to use radioactive material must apply to either their Agreement State or the NRC for approval. In preparation for submitting the application, all the previous steps should be completed. Many of the items above will be reviewed along with the license application to determine approval status.

Note that some states may require radiation-producing machines to be inspected regularly by state-approved qualified experts to maintain a registration.

Step 7: Set-up a Personnel Monitoring Program

Licensees/Registrants are required to monitor radiation exposure of radiation workers to remain in compliance with occupational dose limits.

Instadose+ Dosimeter

It is important to set up a personnel monitoring program for radiation workers who regularly work with or could encounter radiation while on the job. These programs require personnel to wear a dosimeter badge which measures their total received exposure. RSO’s periodically review the personnel exposures.

There are a variety of dosimeter options available including TLDs, ring badges, and badges that provide on-demand dose reads.

Step 8: Recordkeeping

Implementing a radiation safety program means there will not be existing inspection reports, previous audits, or correspondence with regulators on file to familiarize yourself with. However, as the RSO, you will be responsible for maintaining all records regarding personnel exposure, exposure levels to the public, surveys, calibrations, and any maintenance completed on the facility’s X-ray equipment moving forward. Consult your state regulations to determine how long individual records need to be kept.

Conclusion

While there are many moving parts to setting up a radiation safety program, it is an important aspect of a safe workplace. Following these steps will have you well on your way to leading a successful program.

Our experienced radiation safety officers, health physicists, and medical physicists can help you implement a radiation safety program. Contact sales@versantphysics.com to be connected with a physicist or visit our regulatory page for more information.

Interested in becoming a Radiation Safety Officer yourself? Versant Physics offers a 20-hour online Medical Radiation Safety Officer course that teaches how to implement a successful, compliant radiation safety program. It will help you gain a practical understanding of regulations governing the safe use of radiation-emitting machines and radioactive materials, as well as responsibilities for managing radiation safety in a medical setting.

21 Jul 2021
online radiation safety course

The Mobile Radiation Safety Software Solution for the Modern RSO

Fieldwork is an essential component of radiation safety programs. From inventorying radioactive materials, machines, and equipment, to performing audits and inspections, there exists a need to capture real-time information while on the go.

Historically, this information would be recorded on paper forms and later transcribed to an electronic record or placed in a binder. Such methods are both outdated and time-consuming. Their very nature prohibits RSOs from accessing the most up-to-date records while traveling or on-site, and keeps them from streamlining effective administrative processes within their radiation safety programs.

But with the advent of mobile-optimized radiation safety software, performing these tasks and recording the results is more efficient than ever before.

In response to the growing awareness and need for such a software solution in radiation safety, Versant Physics has developed the cloud-based software Odyssey, with mobile optimization as a core focus. Users of the software can access Odyssey on their desktop or laptop computers, tablets, and mobile phones anywhere they have an internet connection.

odyssey screenshot of sealed sources

Versant Physics’ implementation analyst, Katelyn Waters, has seen multiple Odyssey clients incorporate the software into their fieldwork.

“Clients frequently use Odyssey to perform on-site inventories of RAM, sealed sources, radioactive waste, machines, and equipment. They use tablets and cell phones to quickly pull up inventory records by location. From there, individual profiles can be viewed and edited on the go as needed.”

These inventory records are displayed as a table with a simple and searchable format convenient for reviewing information on the smaller screens of mobile devices. Tables contain links to individual profiles with buttons to easily adjust the activity of radioactive materials, update survey, inspection, or calibration due dates, or edit other profile information.

Each profile also has the option to print out a physical label for the inventory. The label can include a logo, information from the profile, free text, and a unique QR code. The QR code can be scanned to take a user directly to a profile to increase speed and accuracy during an inventory.

“The biggest benefit of the QR code system that I see is the ability to perform cradle-to-grave tracking of RAM, sealed sources, and waste containers,” says Waters. “Users can scan the QR code attached to the material throughout its lifetime to view location, activity, and ownership changes to ensure that they are always accessing accurate, up-to-date information.”

odyssey qr code

These QR codes are available to be printed for RAM, sealed sources, waste containers, machines, equipment, and laboratories in Odyssey. Utilizing the labeling tools not only helps radiation safety staff quickly access information, but also complies with FDA and NRC labeling requirements for radioactive materials, machines, and laboratory doors.

“In addition to completing inventories, we also see our clients utilize the Forms module of Odyssey for audits, inspections, and surveys,” says Waters. “Customizable forms can be created which include images like floor plans. These forms can be filled out and the images marked up using mobile devices during the inspection itself.”

odyssey customizable form screenshot

The forms utilized during these inspections are custom forms set up during the implementation process by the Versant Physics team, or by an administrator. The same form can be filled out repeatedly for consistency and to track changes in responses over time. This standardization of forms is an essential aspect of radiation safety for quality control.

Another important consideration for data capture is efficiency. Odyssey aims to accomplish efficient data collection by prefilling data from its other modules into the form where applicable. This reduces the amount of time spent filling out the form and helps minimize the potential for human error as existing data does not need to be copied over.

Utilizing cloud-based software has become increasingly relevant as radiation safety programs move from paper-based methods to electronic solutions. Performing work in the field itself on mobile devices aids in getting records more efficiently into this desired electronic format. Odyssey is engineered to assist with this transition to increase data accessibility, efficiency, and accuracy for radiation safety programs.

You can schedule a live demo with our software specialists to learn more about individual Odyssey modules, mobile features, and software usability.

24 Jun 2021
Packaged tomatos

What is Food Irradiation?

Food irradiation is a common practice that is frequently misunderstood. Not only has the process of exposing food products to ionizing radiation, including X-Rays or electron beams, been heavily researched and utilized safely for over a century, it is a process that has proven benefits for the health of human beings.

The history of food irradiation.


The process of irradiating food began as early as 1905 when patents were issued in the U.S. and Great Britain to use ionizing radiation to kill bacteria found in foods. After World War II, research was conducted by the U.S. Army to verify the safety and efficacy of the irradiation process for meat, dairy products, fruits, and vegetables. Food irradiation has been controlled by the Food and Drug Administration since 1958 and recognized by the United Nations since 1964, when the first meeting of the Joint Expert Committee on Food Irradiation took place. It was determined by this committee in 1980 that “irradiation of foods up to the dose of 10 kiloGrays introduces no special nutritional or microbiological problems,” and the use of irradiation in the U.S. food supply was expanded by the FDA in 1986. In addition to the FDA and the UN, irradiation has been endorsed by the World Health Organization (WHO), the Centers for Disease Control and Prevention (CDC), and the U.S. Department of Agriculture (USDA).

Why irradiate food?


There are several important reasons to irradiate food which ultimately benefit humans.

  • Prevention of Food borne Illness – Nobody likes having food poisoning. Food irradiation eliminates bacteria and molds like Salmonella and Escherichia coli (E. coli) which can spoil food and cause serious foodborne illnesses.

  • Sterilization – Irradiated foods can be used to sterilize foods which do not require refrigeration. These can be used in hospital settings for individuals with compromised immune systems or those undergoing chemotherapy. A variety of household and consumable products are also irradiated for sterilization purposes, including Band-Aids, cotton balls, medical products like surgical gloves, and even cosmetics.

  • Preservation – Have you ever wondered why spices have such a long shelf life, or why that bag of potatoes you bought last week is still sprout free? The answer is food irradiation. Food irradiation can extend the shelf life of certain foods by destroying organisms that cause spoilage and early sprouting.

  • Pest-Control – Irradiation helps control invasive insects that live in or on imported fruits and vegetables by killing or sterilizing them to prevent new bugs from infecting U.S. crops. This method is also safer than certain pest-control practices which have the potential to harm the produce through the use of toxic chemicals.

Of course, the benefits to irradiating food do not diminish the need for safe food handling practices by growers, processors, and consumers. All food should be stored, handled, and cooked appropriately. If safe handling practices are not followed, disease-causing organisms can still contaminate food and illness can occur.

It also does not completely remove all food dangers. For example, food irradiation can slow fruits and vegetables from aging, but it does not stop them. It also does not eliminate dangerous toxins that are already in food, such as Clostridium botulinum, a common bacterium which produces a toxin that causes botulism.

What kind of foods are irradiated?


In the United States, the FDA has approved a variety of foods to undergo irradiation, including:

  • Beef and Pork
  • Poultry
  • Lobster, Shrimp, and Crab
  • Fruits and Vegetables
  • Lettuce and Spinach
  • Shell eggs
  • Shellfish
  • Spices and Seasonings
green radura symbol

The international symbol for irradiation is called the Radura. This green symbol is required to be present on food packaging of irradiated food alongside the statements “Treated with radiation” or “Treated by irradiation.” According to the FDA, bulk foods like fruits and vegetables must be individually labelled with this symbol, however it is not required for individual ingredients in multi-ingredient foods, such as spices, to be labelled. If this symbol is present, this also indicates that the food is not classified as organic no matter how it was grown or produced.

How is food irradiated?


The overall process is simple. Three different kinds of radiation are approved for use: Gamma rays, electron beams, or x-rays. Packaged or bulk food pass through a radiation beam in a radiation chamber on a conveyor belt. The ionizing radiation breaks the chemical bonds into the bacteria or mold cells, which kills or damages the pathogens enough that they cannot multiply. This process does not affect the taste or smell of the food being irradiated.

This process also does not bring food into contact with radioactive materials, nor does it make food radioactive. Irradiated food does not expose those who eat it to radiation.

Are there risks to eating irradiated food?


Eating irradiated food is not harmful and there are no radiation-related risks. In fact, irradiating foods increases the availability of healthy and nutritious food supplies on a global scale. The chemical changes to food caused by irradiation are comparable to the changes food undergoes when cooked or canned.

Safe and beneficial.


Exposing food products to ionizing radiation is a safe, heavily researched process endorsed by governing agencies around the world. It is responsible for controlling invasive insects, destroying harmful bacteria that can cause food borne illnesses, and increases the shelf-life of certain foods which allows for more widespread access to healthy, nutritious food. This process also poses no radiation-risks to the public.

Further reading:

http://hps.org/publicinformation/ate/faqs/foodirradiationqa.html

https://www.epa.gov/radtown/food-irradiation

https://ccr.ucdavis.edu/food-irradiation/history-food-irradiation

https://www.fda.gov/food/buy-store-serve-safe-food/food-irradiation-what-you-need-know