Category: Radiation Safety

08 Apr 2021
Radiation Worker Behind Shielding

ALARA: The Gold Standard of Radiation Protection

The ALARA principle is a relatively simple safety protocol designed to limit ionizing radiation exposure to workers from external sources.

This principle was established by the National Council on Radiation Protection and Measurements (NCRP) in 1954 in response to the atomic bombings of Hiroshima and Nagasaki and the increased interest in nuclear energy and weaponry post-WWII. The philosophy has been refined over the years by different regulatory agencies such as the Atomic Energy Commission (AEC) and Nuclear Regulatory Commission (NRC) as more knowledge about radiation and its effects on living tissue has come to light. In its current form, ALARA stands for “as low as reasonably achievable” and is considered the gold standard for radiation protection.

ALARA is based on the idea that any amount of radiation exposure, big or small, can increase negative health effects, such as cancer, for an individual. It is also based on the principle that the probability of occurrence of negative effects of exposure increases with cumulative lifetime dose. As such, the ALARA principle is considered a regulatory requirement for all radiation programs licensed with the NRC and any activity that involves the use of radiation or radioactive materials.

Check out VersantCast Episode 3: Linear No Threshold with Dr. Alan Fellman

To successfully implement ALARA principles in your radiation safety program, “it is important that every reasonable effort be made to maintain exposures to radiation as far below the dose limits in this part as is practical consistent with the purpose for which the licensed activity is undertaken, taking into account the state of technology, the economics of improvements in relation to state of technology, the economics of improvements in relation to benefits to the public health and safety, and other societal and socioeconomic considerations, and in relation to utilization of nuclear energy and licensed materials in the public interest.” (10 CFR 20.1003)

Time, Distance, and Shielding

There are three factors to the ALARA philosophy which, when executed correctly, can reduce and even prevent unnecessary exposure: time, distance, and shielding.


Limit the amount of time spent near a radiation source. If you must work near a radioactive source, you should work as quickly as possible and then leave the area to avoid spending more time around the source than necessary.


Increase the distance between yourself and a radiation dose. The farther away you are, the lower the dose you will receive. In many cases, the dose rate decreases as the inverse square of the distance – when the distance is doubled, the dose rate goes down by a factor of four.


Put a barrier between you and the radiation source. The type of barrier will depend on what kind of radiation source is being emitted but should be made of a material that absorbs radiation such as lead, concrete, or water. This can also include PPE such as thyroid shields and lead vests.

medical professionals implementing time, distance, and shielding principles


The ALARA principle has successfully limited exposures to workers—and patients undergoing medical procedures involving radiation—for several decades. Adhering to this principle as well as your state’s radiation safety regulations will result in keeping workers healthy and protected.

Visit our website for more information on how Versant Physics’ board-certified health physicists, medical physicists, and radiation safety officers can help you implement safe practices in your radiation safety program.


10 Mar 2021
Reviewing the License Regulations

A Guide to Limited vs. Broad Scope Radioactive Materials Licenses

We are often asked questions about applying for or changing licenses to possess and use radioactive materials. There are many different types of licenses; choosing amongst them can be confusing. In this post, we will discuss four common types.

US NRC logo

With some exceptions, approval by a regulatory agency (U.S. Nuclear Regulatory Commission or equivalent state agency), in the form of a license, is required to use and/or dispose of radioactive materials.

The type of license authorizing the purchase, possession, use, and disposal of radioactive materials is based on several factors:

  • Type, form and quantity of radioactive materials requested
  • Proposed use(s)
  • Experience of the proposed licensee with managing the use of radioactive materials

Types of licenses include, but are not limited to:

  • Limited scope specific academic and research and development
  • Limited scope specific medical use
  • Broad scope specific
  • Broad scope specific medical use

In this post, we will discuss the regulations under which the U.S. Nuclear Regulatory Commission (NRC) issues two common types of licenses: (i) limited scope specific and (ii) broad scope specific.  Some states, called Agreement States, have the authority under NRC regulations to issue licenses.  Their regulations are equivalent to NRC regulations.

1. Limited Scope Licenses

These licenses are issued to applicants subject the following limitations:

  • Radionuclides
  • Specified chemical and physical form(s)
  • Possession limits
  • Proposed use(s)
  • Radiation Safety Officer (RSO)
  • Authorized User(s)
  • Location(s) of use

The RSO’s training and experience should be applicable to and generally consistent with the types and quantities of licensed materials listed on the license.  Authorized users (AUs) must have adequate training and experience with the types and quantities they intend to use (NUREG 1556, Vol. 7, Rev. 1).  The applicant must submit to the regulatory agency for review and approval the specific training and experience of each proposed user and the facilities and equipment available to support each proposed use.

If the licensee wishes to change any of these limitations or add or remove an Authorized User (AU), permission must be sought from the issuing regulatory agency to amend the license. 

Medical Licenses – general comments

Licensing for the use of radioactive materials to diagnose and treat human disease is subject to more complex regulations than the academic and research and development licenses described above.  A wide variety of radionuclides and physical and chemical forms are used for a multitude of purposes in human medicine.  Consequently, AUs and the RSO must meet specific and extensive training and experience criteria focusing on the type, form, and quantity to be used as well as the intent of the use (diagnosis vs. treatment).

An AU is charged with the responsibility for (NUREG 1556 Vol. 9, Rev. 3)

  • radiation safety commensurate with use of radioactive materials;
  • administration of a radiation dose or dosage and how it is prescribed;
  • direction of individuals under the AU’s supervision in the preparation of radioactive materials for medical use and in the medical use of radioactive materials; and
  • preparation of a written directive, if required.

To be named as an AU on a medical license, the individual must satisfy one or more of the requirements outlined in Subparts D, E, F, G or H of 10 CFR 35.  In general, this requirement can be met by:

  • being board certified in a specialty medical discipline appropriate to the intended use that is recognized by the Commission or Agreement State; or
  • being named as an AU on another license issued by the Commission or Agreement State for the same or similar type, form, and quantity of radioactive materials in question; or
  • having completed training and experience as specified in the regulations.

The RSO on a medical license must satisfy the training and experience requirements outlined in 10 CFR 35.50:

  • be certified by a specialty board whose certification process has been recognized by the Commission or an Agreement State; or
  • have completed a structured educational program as outline in 10 CFR 35.50(b); or
  • be a medical physicist who is certified by a specialty board recognized by the Commission or an Agreement State, has experience with the radiation safety aspects of similar types of radioactive materials for which the licensee seeks approval and has training in the radiation safety, regulatory issues, and emergency procedures for the types of use for which a licensee seeks approval; or
  • be a medical AU, authorized medical physicist, or authorized nuclear pharmacist identified on a Commission or an Agreement State license, a permit issued by a Commission master material licensee, a permit issued by a Commission or an Agreement State licensee of broad scope, or a permit issued by a Commission master material license broad scope permittee, has experience with the radiation safety aspects of similar types of use of byproduct material for which the licensee seeks the approval and Is an authorized user, authorized medical physicist, or authorized nuclear pharmacist identified on a Commission or an Agreement State license, a permit issued by a Commission master material licensee, a permit issued by a Commission or an Agreement State licensee of broad scope, or a permit issued by a Commission master material license broad scope permittee, has experience with the radiation safety aspects of similar types of use of byproduct material for which the licensee seeks the approval.

2. Limited Scope Specific Medical Licenses

A specific license of limited scope may be issued to private or group medical practices and to medical institutions.   Each type, form, quantity and use and condition of use of radioactive materials as well as the RSO and AU(s) are named on the license (NUREG 1556 Vol. 9, Rev. 3).  These licenses may also be issued to an entity requesting authorization to perform mobile medical services and certain non-medical activities such as self-shielded blood irradiators.  Changes to any of these specifications or conditions must be requested and approved by amendment.

Research Involving Human Subjects

“Medical use” of radioactive materials includes administration to human research subjects.  A license condition authorizing such research is not required if the research is conducted, funded, supported or regulated by a Federal Agency that has implemented the Federal Policy for the Protection of Human Subjects.  Otherwise, the licensee must apply for and receive an amendment before conducting such research.  In all cases, licensees must obtain informed consent from the human subjects and prior review and approval by an Institutional Review Board.  All research involving human subjects must be conducted only with the radioactive materials listed in the license and for the uses authorized in the license (NUREG 1556, Vol. 9, Rev. 3).

Research involving human subjects may be conducted under either limited scope or broad scope specific licenses.

3. Broad Scope Specific Licenses

Broad scope specific licenses generally authorize possession and use of a wide range of radioactive materials.  Because regulatory agencies grant significant decision-making authority to broad scope licensees through the license, a broad scope license is not normally issued to a new licensee. An applicant for a broad scope license typically has several years of experience operating under a limited scope license and a good regulatory performance history (NUREG 1556 Vol. 11, Rev. 1).  Changes to the radiation safety program approved via in-house review and approval by the RSO and/or RSC (see below) do not appear on the license but are subject to review by regulatory agencies during routine inspections.

Title 10 of the Code of Federal Regulations (10 CFR) Part 33, “Specific Domestic Licenses of Broad Scope for Byproduct Material,” provides for three distinct categories of broad scope licenses (i.e., Type A, Type B, and Type C), which are defined in 10 CFR 33.11, “Types of Specific Licenses of Broad Scope.”

Type A

Type A licenses of broad scope are typically the largest licensed programs and encompass a broad range of uses.  Licensees use a Radiation Safety Committee (RSC), radiation safety officer (RSO), and criteria developed and submitted by the licensee and approved by the NRC during the licensing process to review and approve all uses and users under the license.

An applicant for a Type A broad scope license must establish administrative controls and provisions related to organization and management, procedures, record keeping, material control, and accounting and management review necessary to ensure safe operations, including:

  • establishment of an RSC
  • appointment of a qualified RSO
  • establishment of appropriate administrative procedures to ensure the following:

— control of procurement and use of byproduct material

— completion of safety evaluations of proposed uses that take into consideration adequacy of facilities and equipment, training and experience of the user, and operating and handling procedures

— review, approval, and recording by the RSC of safety evaluations of proposed uses

  • use of byproduct material only by, or under the direct supervision of, individuals approved by the licensee’s RSC

Because these controls and provisions have been established, the applicant may approve in-house, without requesting amendment:

  • Authorized Users
  • location of use within the confines of the physical location(s) listed on the license
  • changes in use of radioactive materials so long as the use is consistent with the license conditions and appropriate safety evaluations have been performed, documented, and approved by the RSC

The requirements for issuance of a Type A broad scope license are described in 10 CFR 33.13, “Requirements for the Issuance of a Type A Specific License of Broad Scope.”

Type B

Type B broad scope licensed programs are normally smaller and less diverse than Type A broad scope programs. Type B broad scope licensees use an RSO and criteria developed and submitted by the licensee and approved by the NRC during the licensing process to review and approve all uses and users under the license. Because the RSO reviews and approves all uses and users under the license, rather than a full RSC, as established for Type A broad scope programs, the types and quantities of byproduct material authorized by the Type B broad scope license are limited to those described in 10 CFR 33.11(b) and 10 CFR 33.100, “Schedule A,” Column I.  Generally, the scope of authorization for Type B licenses is limited to the experience and knowledge of the RSO.

Changes to the type, form and quantity of radioactive materials may have to be approved by the regulatory agency by amendment, depending on the specific provisions of the license.

The requirements for issuance of a Type B broad scope license are described in 10 CFR 33.14, “Requirements for the Issuance of a Type B Specific License of Broad Scope.”

Type C

Type C broad scope licensed programs typically are issued to institutions that do not require significant quantities of radioactive material but need the flexibility to possess a variety of different radioactive materials. Users of licensed material under these programs are approved by the licensee based on training and experience criteria described in 10 CFR 33.15(b). The types and quantities of byproduct material authorized by the Type C broad scope license are limited to those described in 10 CFR 33.11(c) and 10 CFR 33.100, Schedule A, Column II, again, considering the unity rule.

While 10 CFR 33.15 does not require Type C broad scope licensees to appoint an RSO, the licensee must establish administrative controls and provisions related to procurement of byproduct material, procedures, record keeping, material control and accounting, and management review to ensure safe operations. This should include the appointment of someone responsible for the day-to-day operation of the radiation safety program, such as an RSO.

Changes to the type, form and quantity of radioactive materials may have to be approved by the regulatory agency by amendment, depending on the specific provisions of the license.

The requirements for issuance of a Type C broad scope license are described in 10 CFR 33.15, “Requirements for the Issuance of a Type C Specific License of Broad Scope.”

4. Broad Scope Medical Licenses

The NRC issues specific licenses of broad scope for medical use (i.e., licenses authorizing multiple quantities and types of byproduct material for medical use under 10 CFR Part 35, as well as other uses) to institutions that (i) have experience successfully operating under a specific license of limited scope and (ii) are engaged in medical research and routine diagnostic and therapeutic uses of byproduct material (NUREG 1556, Vol. 9, Rev. 3).  Typically, these are large medical centers/teaching hospitals that have a need to administer or use a wide variety of radionuclides and/or radiopharmaceuticals for diagnosis and therapy.  Because these institutions have complex programs, the authority to approve changes in-house makes the program flexible and nimble. 

AUs and the RSO on a broad scope medical license must meet the same criteria for training and experience as for a limited scope medical license discussed above. 

Regulatory Services by Versant Physics

Our team of experienced Radiation Safety Officers can help you navigate the NRC regulations and determine which license type is appropriate for your facility. Contact to speak to a team member or learn more about our Regulatory services.

01 Mar 2021
Incident Management for Radiation Incidents

Incident Management for Radiation Accidents

Any workplace, regardless of industry, can be affected by an emergency or accident. However, if your facility works with man-made ionizing radiation sources such as medical diagnostic equipment or radiopharmaceuticals, it is important you prepare for potential radiation incidents to ensure a swift and appropriate response should something occur.

Workplace radiation incidents can include:

  • Radioactive material spills or releases
  • Contamination of personnel
  • Malfunctioning safety controls
  • Lost, stolen, or orphaned radioactive material sources
  • Equipment leaks (ex. Industrial equipment)
  • Transportation incidents or accidents
  • Misuse of medical source materials or industrial radiographic material

While clean up methods and preventative measures will vary depending on the type and severity of the incident, how you collect and track information regarding the incident should be standard across your organization.

Identifying How the Accident Occurred

The first step in responding to a workplace radiation incident is understanding how the accident occurred in the first place. Was there any missing signage in the area where the accident occurred? Were ALARA principles being followed by all personnel? Has the equipment been properly maintained and inspected regularly? Even accidents that occur due to simple human error should be noted and tracked, especially if similar incidents happen regularly.

woman with yellow safety helmet and goggles on ipad

Identifying the Type of Radiation Exposure During an Incident

During a radiation incident, it is important to determine if and how an employee was exposed. The risk from exposure varies depending on the energy the radionuclide emits, the type of radiation (alpha, beta, gamma, x-rays), whether the exposure was external or internal (via injection, eating, drinking, etc.), how long people were near the radioactive material, and more.

Tracking this information is important because of the potential health effects that can result from radiation exposure. Exposure to low levels of radiation, such as the amount found in our environment (See Background Radiation Sources), will not typically have immediate health effects. However, it can contribute to overall cancer risk over a long period of time. Exposure to high doses of ionizing radiation can result in health problems ranging from skin burns and radiation sickness to cardiovascular disease and cancer.


Sometimes the effects of a radiation incident or exposure will not be known right away. As time goes on, it can be difficult to recall the details of the incident with enough clarity to implement preventative measures. In these situations it is recommended that RSOs and EHS managers utilize an Incident Management software to not only identify and track the initial incident, but to use it to look back on what occurred when creating new policies and procedures.

Steps to Protect Against Future Exposure Incidents

Whether your facility handles man-made radiation or naturally occurring radioactive material, there are certain steps that can be taken to protect workers from future exposure after an incident has occurred.

  • Implement countermeasures such as time, distance, and shielding

Time, Distance, and Shielding are considered the standard measures for minimizing occupational radiation exposure. Limiting the amount of time spent around a radiation source reduces the overall dose from the radiation source. Similarly, the intensity and dose decrease the farther away a person is from a radiation source. Shielding measures including barriers made of lead, concrete, or water can provide protection from penetrating radiation such as gamma rays.  

  • Radiation Safety Training
    One of the best ways to keep accidents from occurring is by training employees on the basic principles of radiation safety and the risks of mishandling radiation producing equipment or radiopharmaceuticals. It is important to provide refresher training periodically, especially in light of an incident, to ensure employees are up to date and prepared.

  • Regular monitoring, inspections, and facility audits/surveys are also ideal ways to eliminate radiation accidents and ensure everything is operating smoothly.

Implementing safety measures and following ALARA principles will help decrease the number of incidents that occur, however it probably won’t eliminate them entirely. To ensure the safety of both yourself and others in your facility, it is vital that radiation incidents be attended to promptly. Furthermore, it is important that such incidents be carefully recorded and tracked to prohibit the incident from occurring again. Utilizing Incident Management software is a great way to help you document accidents, emergencies, and illnesses, view trends in data to identify problem areas, and help you prepare and prevent future incidents from happening.

Versant Physics radiation safety software suite Odyssey is now offering the Incident Management module. The module, which can be used individually or in conjunction with any of Odyssey’s radiation safety modules, provides RSOs and EHS professionals the ability to monitor and track a variety of workplace incidents, including radiation safety events.

odyssey incident management module on mobile devices

The module features a user-friendly dashboard for easy tracking and analysis. Users can also efficiently follow-up with open cases and analyze trends in reported incidents, making it easier to create a safe, compliant workplace for you and your staff.

Contact to schedule a demo, or visit our Odyssey page for more information on functionality and pricing.


28 Jan 2021
Five Reasons Your Facility Needs a Radiation Safety Officer

Five Reasons Your Facility Needs a Radiation Safety Officer

A radiation safety officer is an individual responsible for radiation safety in a Nuclear Regulatory Commission (NRC) or Agreement State licensed program. They ensure that any activity involving radiation and radioactive materials is conducted safely to prohibit unnecessary exposure and that all licensed activities are conducted in compliance with both license and regulation requirements. Their responsibilities are varied and extensive, however, an RSO can generally expect to conduct reviews of occupational exposures, surveys and program audits, and lead radiation safety training sessions for authorized users, workers, and ancillary personnel. They are also in charge of spill response and contamination protocols, radioactive material transportation, storage, and disposal, and enforcing the ALARA (As Low as Reasonably Achievable) principle.

RSOs are frequently found in medical facilities that intentionally administer radioactive materials to patients in the form of X-ray and fluoroscopy procedures, radiopharmaceuticals (bone scan, stress test, PET/CT, etc), and radiation therapy. To perform these procedures, medical facilities are required to obtain a permit or license, either issued by the NRC or Agreement State, which an RSO must be listed on.

Medical x-ray machines.

But is an RSO needed for non-medical facilities as well?

In short, yes. Having an RSO on your team is not only beneficial for the overall safety of your clients and staff but is also a requirement of any licensed radiation safety program. We have outlined five reasons that will help you determine if your facility needs an RSO.

1. Your facility houses or utilizes radioactive materials, radiation-producing machines, and/or non-ionizing radiation sources such as lasers.

Specific regulations vary from state to state, however, if your facility utilizes any kind of ionizing or non-ionizing radiation source, you need a radiation safety program, and someone specifically trained to manage it.

In addition to overseeing the radiation safety program and all that entails, the RSO will keep an inventory of all material and machines located in your organization, ensure proper labeling, maintain current machine registrations, and ensure appropriate calibration and testing are performed regularly.

2. You need a highly trained individual who is well-versed in the U.S. NRC or state specific regulations that govern radiation safety and medical use of radioactive materials.

An RSO is properly trained on principles and practices of radiation protection, radiation measurement and monitoring, the biological effects of radiation, and more.

As part of their training, they are also familiar with the extensive regulations laid out by the U.S. Nuclear Regulatory Commission (NRC) or Agreement States. It is their duty to navigate these regulations for your organization to ensure compliance, and to keep on top of any updates that may impact your organization or its employees.

NRC Agreement States

3. You need someone to enforce radiation policies and procedures.

An RSO is granted the authority by management to enforce policies and procedures regarding radiation safety and regulatory compliance established in an organization’s radiation protection program or license. With all that is required of a safe, successful radiation protection program, you can rely on the RSO to make sure everything is in order and the rules are being followed by all participants.

4. You want to identify problems and implement corrective actions quickly.

Of course, accidents happen. Whether due to human error or technical malfunction, they are unavoidable. While we are all familiar with the devastating effects of radiation-related accidents, including those which occurred in the wake of nuclear accidents at Three Mile Island and Fukushima, these types of accidents are not likely to occur in your organization’s day-to-day activities. However, issues such as missing signs, incorrect labels, faulty shielding, or improperly calibrated instruments can not only cost your organization big fines but can pose direct health risks to you and your staff if left unchecked.

A designated RSO not only takes charge and initiates corrective actions during an emergency, but they are also responsible for investigating incidents and finding solutions to ensure such issues do not occur again. They are often the link between management and operations, alerting them to any problems that exist, and continually update and revise the policies laid out in their radiation safety program. They also perform regular safety training and program audits which are excellent ways to identify problem areas and terminate unsafe operations before they become a problem.

5. You want to protect your personnel from occupational radiation exposure risks.

Medical personnel are not the only ones at risk of occupational radiation exposure. Anyone who regularly uses or operates radiation-producing machinery, including researchers, manufacturers, and salespeople, can be exposed. If not properly controlled and monitored, these exposures can cause damage to the cells and genetic material and lead to serious health problems such as cataracts, temporary or permanent sterility, and cancer.

professionals at risk of occupational radiation exposure
Medical personnel are not the only ones at risk of occupational radiation exposure.

Although direct supervision of individuals using ionizing radiation is not typically a role of the RSO, the RSO is responsible for ensuring all authorized users and ancillary workers are properly trained in basic radiation safety and enforce control measures, such as shielding and personal protective equipment (PPE).

An RSO will also likely suggest a personnel monitoring program that assigns dosimeters to your staff and monitors their received radiation dose as well. In addition to advising on who and when individuals should be monitored, they will regularly monitor doses, manage declared pregnancies, and provide compliance reports.

See our post about using Odyssey to manage your personnel dosimetry program.

Next Steps

A properly trained individual, whether they are a licensed medical professional or not, can be added to a license as the RSO if they have successfully completed all the education and experience requirements of the current regulations and agree to be responsible for implementing the radiation safety program. Depending on their other professional responsibilities, they can serve as full or part-time. An RSO should also have excellent management and record-keeping skills and be comfortable with interacting with regulatory agencies.

Due to the extensive training and knowledge required for this role, many organizations choose to outsource this work. Versant Physics offers RSO and Regulatory support for traditional medical facilities such as hospitals and clinics, universities, small businesses, medical equipment manufacturers, and more. Whether you are looking for a consultant to assist on minor aspects of your program, on-site personnel to perform a program audit or survey, or you need help managing your personnel dosimetry program, our experienced, knowledgeable medical and health physicists, qualified experts, and support specialists can help.

Visit our regulatory page for a complete list of regulatory service offerings or contact to speak to a physicist about your unique program needs. 


  1. Versant Medical Physics and Radiation Safety. Virtual MRSO Course. January 22, 2021.
  2. 35.50 Training for Radiation Safety Officer and Associate Radiation Safety Officer. January 16, 2019.
  3. “RSO Responsibilities”
  4. AAPM Report No. 160. “Radiation Safety Officer Qualifications for Medical Facilities.” November 2010.

04 Nov 2020
Odyssey's Personnel Dosimetry Management module

Manage Your Personnel Dosimetry Program with Versant Physics

Personnel Dosimetry is a key part of any radiation safety program. The dosimeter’s primary use is to determine doses to individuals who are exposed to radiation on the job by measuring the absorbed radiation energy. These devices are worn on the chest or abdomen, with specialized dosimeters available for other areas of the body such as the extremities.

Federal and State regulations mandate occupational exposure monitoring for a variety of reasons. These regulations can vary based on access to radiation or high radiation areas, quarterly or annual limits, or other requirements mandated by the regulating body.

There are dozens of reasons outside of these regulations why personnel dosimetry monitoring is important for the health and safety of occupationally exposed personnel, but it can be difficult to know where to begin when implementing your own program. There are regulations to navigate, staff to train on how to wear and read their badges, and the constant administrative upkeep required to monitor incoming dose reads and to ensure that your program is compliant.

Versant Physics specializes in personnel dosimetry program management, with a trained technical support team ready to tackle compliance issues and monitoring, badge administration—including initializing for new wearers, adding and removing wearers, read day reminders, and monthly reporting—and training.  

Instadose+ Dosimeter

“Our clients range from less than 10 badges to over 1000 badges, and include Instadose+, ring dosimeters, and TLD’s,” says Spencer Vanderweele, Versant Physics’ lead Technical Support Specialist. “It is important for our wearers to transmit readings on a regular basis to ensure each badge is functioning as expected. Regular readings also help us to confirm that each badged worker is following their ALARA practices to keep exposures as low as reasonably achievable.”

View how easy it is to read your Instadose+ badge here.

To manage the back end of dosimetry programs for all Versant Physics accounts, Vanderweele relies on the company’s proprietary software Odyssey. The cloud-based software was designed to simplify every aspect of a radiation safety program, with an entire module devoted to personnel dosimetry.

“With Odyssey we can view exact numbers at a glance, or dive deep into records if there are ever any concerns,” says Vanderweele. “I utilize the Personnel Dosimetry module to manage most accounts, and consistently find myself diving into the records through the Query Builder. This feature allows you to set your own parameters for record results based on active participants and allows you to filter out participants who required updated readings to more easily follow up.

Odyssey's Query-builder
Odyssey’s Query-builder feature.

“The new Form Generator has [also] been an incredible help. This feature allows the user to pull Form-5s, pre-sign, and even email directly to participants all from one page! This saves me or the RSO time (and their wrist!) by allowing us to pre-sign thousands of documents with the click of a button!”

The module is made up of a series of customizable widgets that allow users to visualize pre-set metrics for at-a-glance monitoring. Users can view recent logins and read activity, latest abnormal readings, and set up a User Watch List for wearers likely to exceed internal or annual dose limits. These features, including the Query-Builder and Form Generator, simplify and streamline the badge management process for the busy RSO or badge administrator.

Odyssey's Personnel Dosimetry Management module
Odyssey’s Personnel Dosimetry module dashboard.

In fact, Vanderweele says, without Odyssey, managing a single client would likely be a team effort.

“It would have a tremendous impact on the timeliness of our client response and ability to provide relevant, up-to-date information. Simply counting the number of individual badges, of all types, would be a huge task on its own without Odyssey. I know because Odyssey was not available to me when I first started at Versant Physics. But now, Odyssey allows me to put together complex and specific reports with ease, all while managing several accounts.”

The benefits of using a seasoned badge management team like Versant Physics, combined with the efficient power of Odyssey, are numerous. “Versant Physics’ background allows us to cater to our client’s specific needs,” says Vanderweele. “From our regulatory expertise to our technical support systems, Versant Physics will take the guess work out of your radiation safety program.”

Contact to learn more about our personnel dosimetry management process, to order badges, and pricing details.

05 Oct 2020

After Fukushima:
Training Medical Responders to Care for Contaminated Patients

Author Bio: Since 1981, Andrew Karam, PhD, CHP has worked primarily in areas related to radiation safety as a radiation safety professional, a scientist and professor, a consultant, or an instructor. He is currently a Fellow of the Health Physics Society and a Homeland Security Scientific Advisor for Mirion Technologies. He is also a writer, with over 200 encyclopedia articles, a variety of scientific and technical articles, several books in print, and an 8-book series (Controversies in Science, Facts on File) in the works. Learn more at

After Fukushima: Training Medical Responders to Care for Contaminated Patients

In early April 2011 I got a phone call from a non-governmental organization (NGO) called NYC Medics – they were wondering if I was willing to travel to Japan to help provide training for medical and emergency responders who were working in and caring for patients coming from areas contaminated by radioactive fallout from the reactor meltdowns. It took me about two seconds to agree – a week or so later I was on an ANA flight to Tokyo, to meet up with the other two members of our group. I brought with me some of my radiation detectors and a dosimeter for each person in our group – I assumed the informal role of Radiation Safety Officer for our group while we were in the Fukushima area.

In a few phone calls (in those pre-Zoom days) with our Japanese hosts and NYC Medics we settled on a course of action when we arrived. Our mission was to provide training, but we agreed that we wanted to work from the standpoint of personal knowledge of conditions in the affected areas as opposed to simply telling attendees “This is what the International Atomic Energy Agency says” or “This is what the Japanese government says.” So we agreed to start our trip with three days in the areas that were slammed with the tsunami and subject to fallout from the reactor meltdowns. (I was hoping to visit the nuclear power station, but I suspect my colleagues (a physician and an expert in the psychosocial impacts of WMD and similar disasters) were somewhat relieved.) After returning to Tokyo, our plan was to spend a day developing our training and the last week or so of our time in Japan would be spent presenting it to a variety of audiences throughout northern Japan – as far south as Kamakura and as far north as Sapporo on the island of Hokkaido.

After Fukushima: Map of Japan

The time we spent in the areas affected by the tsunami and radioactive fallout was heartbreaking. Areas that had been inundated by the tsunami were devastated – acres of mud littered with debris, reefs of battered cars, and the occasional shell of a building left standing. It was sobering to realize that each car represented one or more people trying to flee the tsunami who had failed; even more sobering was the field we passed that had a line of men, each holding a bamboo pole, probing the mud for bodies. We spent three days in this area, visiting shelters, meeting with mayors, talking with physicians, and trying to wrap our minds around what had happened.

One of my objectives was to make what radiation measurements I could, and it was clear that we spent much of our time in areas where the fallout plume had settled to the ground. Not only were radiation dose rates close to 100 times higher than what’s normal in most of Japan (as high as about 0.5 mR/hr), but I was also able to identify I-131 and I-133, both with half-lives far too short to occur naturally and both produced in copious quantities by nuclear fission. I also identified Cs-137 and Cs-134, two other fission products, and a later analysis of the spectra I collected revealed a few more nuclides as well.

We returned to Tokyo on one of the first shinkansen (bullet trains) to leave Sendai after the earthquake and spent the next day figuring out what we wanted to say and how we wanted to say it. As the group’s health physicist I spoke about how to safely treat contaminated patients, our physician talked about the medical effects of radiation and contamination exposure, and our psycho-social researcher talked about those aspects of major radiological events. And, since we had some lectures that were to be one hour and some that were slated for two, we also discussed whether or not to have two separate sets of slides (we finally decided to go with a single set, just to include more details for the longer lectures). Finally, we also decided to avoid lecturing our audience but, rather, to treat our sessions more as a sort of refresher training.

For my part of the training, I focused on good radiological work practices when working with contaminated patients. Contamination control, for example – I discussed the fact that Alexander Litvenenko was shedding Po-210 with every hair shed from his head and his body, unbeknownst to any of those caring for him. In spite of that, none of the hospital staff had a significant intake of polonium because they were simply taking the normal precautions that they took with any patients suffering from an unknown ailment; that the standard precautions they already knew how to take were perfectly capable of protecting them from radioactive contamination as well as from the more common microbes. Then I’d ask them if they ever cared for nuclear medicine patients – in every group there were several – and I’d mention that the lowest diagnostic radiopharmaceutical dose carried more radioactivity than even most heavily contaminated patients. The message was that we weren’t trying to teach them anything new – just to remind them that they already knew what to do, they just might not realize it.

After Fukushima: the trauma bay at the Fukushima Medical University, April 2011
The trauma bay at the Fukushima Medical University, April 2011

I went through the standard time-distance-shielding explanations as well as other basics (types of radiation, health effects, natural radiation, and so forth) as well as a quick discussion of the radiological conditions we’d seen in the Fukushima area. But the main focus of my part of the lecture was a review of good radiation safety work practices that was aimed at helping them to feel comfortable caring for their patients. In large part, this was because of surveys conducted shortly after the September 11 attacks, showing that up to 30% of medical responders might decide not to go to work in the event of a radiological attack, citing fears of the health effects on them and their families – we felt it important to  try to assuage any such concerns among those in our audience.

The medical discussion came next, beginning with a brief discussion of the manner in which radiation affects the body and the amount of exposure required to cause problems; our physician also reviewed the nuclides we had identified during our time in the plume area and how those affected the body. She also spent some time talking about recognizing radiation injury, the symptoms of Acute Radiation Syndrome, and a bit about radiation’s role in inducing cancers, as well as the normal latency period for such cancers. And then she closed this part with a brief discussion of the effects of radiation on pregnancy; there are estimates that, in the aftermath of Chernobyl, European women had over 100,000 unnecessary therapeutic abortions, primarily because their physicians didn’t have a good understanding of the reproductive effects of radiation exposure – given our audience, we wanted to make sure they all had a good understanding of the topic.

Finally, we closed with a discussion of the psychological effects noted in earlier radiological and nuclear accidents, helping the audience to understand what to look for in their patients as well as among their patients’ families. Here, too, we could draw on what we had seen earlier during our visits to the towns, shelters, and hospitals, as well as how people often reacted to being screened, being ordered to evacuate, and so forth. This part closed with a discussion of healthcare professionals and how they often reacted to working with patients whom they feared might pose a risk to them. After we were done, we opened the floor for any questions.

Over the course of about a week we gave 7 presentations in five different cities to groups as small as 50 and as large as 250 people – we figured we reached over 1000 people in these talks. One concrete outcome was that the organization that sponsored our time in Japan (and the one that had asked NYC Medics for our help) told us that they had authorized admitting up to 5000 patients from contaminated areas to their hospitals – this freed up needed beds closer to the accident site and elsewhere in Japan.

Dr. Andrew Karam presenting a lecture in Tokyo, Japan, April 2011
Dr. Andrew Karam presenting a lecture in Tokyo, Japan | April 2011

One of the biggest adjustments for all of us was working with translators – we never did decide if it was easier to work with simultaneous or sequential translation. Early on we realized that it was important to sit down with our translators before each lecture (we had different sets for each venue) to make sure they understood the scientific terminology as well as finding out their preferences and how we could make their job easier. It was an interesting experience for all of us!

When all was said and done, we’d spent 12 days in Japan, most of which we were busy for 12-16 hours. We logged over 50 aftershocks stronger than magnitude 5, with the strongest being a 6.0 our first night there (I slept through it), and we each picked up more radiation dose on the flights over and back than during our time on the ground. I’m not sure about my colleagues – I was so tired that I slept through virtually the entire flight back from Tokyo to New York. All in all it was exhausting – but we all agreed it was also one of the high points of our careers. One that we hope to never repeat.

The views, thoughts, and opinions expressed in the text belong solely to the author, and do not necessarily reflect the views and opinions of Versant Physics.

Versant Physics logo

Forum Article "Radiopharmaceutical Extravasation: Pragmatic Radiation Protection" published ahead of print

An article written by Versant team members Dr. Darrell R. Fisher, Ph.D. and Misty Liverett, M.S., CNMT was recently published ahead of print in Health Physics. The article provides an unbiased, scientific assessment of pragmatic and reasonable health physics actions that should be taken in response to inadvertent extravasation events. Click the link below to view the article.



Permit Profile

Each permit has a dedicated profile of information that includes authorized personnel, radioactive material, machines, and devices. Permit conditions, completed audits, and forms are also found on this profile.

Authorized Condition Database

Create and view authorized conditions included on permits. Previously created authorized conditions are listed with their code, category, and description.

Permit Enforcement

Information specified on a permit not only serves as a record of that permit, but also controls what can be added to other modules. The location, owner and type of radioactive materials, machines, and equipment can be enforced by permits.

Permit Audits

Perform permit audits, mail the results to relevant personnel, and track responses to non-compliances.